Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method ΔSCF Quasi-Adiabatic States

被引:19
作者
Liu, Junzi [1 ]
Zhang, Yong [2 ]
Bao, Peng [1 ]
Yi, Yuanping [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China
[2] Synfuels China, Beijing 101407, Peoples R China
基金
中国国家自然科学基金;
关键词
DENSITY-FUNCTIONAL THEORY; DIABATIC STATES; BLOCK DIAGONALIZATION; MATRIX-ELEMENTS; PROGRAM PACKAGE; MULLIKEN-HUSH; RECOMBINATION; ENERGIES; FOURFOLD; ORBITALS;
D O I
10.1021/acs.jctc.6b01161
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electronic couplings of charge-transfer states with the ground state and localized excited states at the donor/acceptor interface are crucial parameters for controlling the dynamics of exciton dissociation and charge recombination processes in organic solar cells. Here we propose a quasi-adiabatic state approach to evaluate electronic couplings through combining maximum occupation method (mom)-Delta SCF and state diabatization schemes. Compared with time-dependent density functional theory (TDDFT) using global hybrid functional, mom-Delta SCF is superior to estimate the excitation energies of charge-transfer states; moreover it can also provide good excited electronic state for property calculation. Our approach is hence reliable to evaluate electronic couplings for excited state electron transfer processes, which is demonstrated by calculations on a typical organic photovoltaic system, oligothiophene/perylenediimide complex.
引用
收藏
页码:843 / 851
页数:9
相关论文
共 89 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]  
[Anonymous], 2006, BORN OPPENHEIMER CON
[3]   Determination of diabatic states through enforcement of configurational uniformity [J].
Atchity, GJ ;
Ruedenberg, K .
THEORETICAL CHEMISTRY ACCOUNTS, 1997, 97 (1-4) :47-58
[4]   ADIABATIC AND DIABATIC REPRESENTATIONS FOR ATOM-MOLECULE COLLISIONS - TREATMENT OF COLLINEAR ARRANGEMENT [J].
BAER, M .
CHEMICAL PHYSICS LETTERS, 1975, 35 (01) :112-118
[5]   ELECTRONIC NON-ADIABATIC TRANSITIONS - DERIVATION OF THE GENERAL ADIABATIC-DIABATIC TRANSFORMATION MATRIX [J].
BAER, M .
MOLECULAR PHYSICS, 1980, 40 (04) :1011-1013
[6]   The Kohn-Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn-Sham orbital energies [J].
Baerends, E. J. ;
Gritsenko, O. V. ;
van Meer, R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (39) :16408-16425
[7]   Self-consistent-field calculations of core excited states [J].
Besley, Nicholas A. ;
Gilbert, Andrew T. B. ;
Gill, Peter M. W. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (12)
[8]  
Boys S.F., 1966, Quantum Theory of Atoms, P253
[9]   Molecular Understanding of Organic Solar Cells: The Challenges [J].
Bredas, Jean-Luc ;
Norton, Joseph E. ;
Cornil, Jerome ;
Coropceanu, Veaceslav .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1691-1699
[10]   Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers:: A molecular picture [J].
Brédas, JL ;
Beljonne, D ;
Coropceanu, V ;
Cornil, J .
CHEMICAL REVIEWS, 2004, 104 (11) :4971-5003