Inverse problems in geographical economics: parameter identification in the spatial Solow model

被引:7
|
作者
Engbers, Ralf [1 ]
Burger, Martin [1 ]
Capasso, Vincenzo [2 ,3 ]
机构
[1] Univ Munster, Inst Computat & Appl Math, D-48149 Munster, Germany
[2] Univ Milan, Dept Math, Interdisciplinary Ctr Adv Appl Math & Stat Sci AD, I-20133 Milan, Italy
[3] Univ Carlos III Madrid, Escuela Politecn Super, Gregorio Millan Inst, Leganes 28911, Spain
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2014年 / 372卷 / 2028期
关键词
inverse problems; parameter identification; geographical economics; spatial Solow model; production function; INCREASING RETURNS; GROWTH;
D O I
10.1098/rsta.2013.0402
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The identification of production functions from data is an important task in the modelling of economic growth. In this paper, we consider a non-parametric approach to this identification problem in the context of the spatial Solow model which allows for rather general production functions, in particular convex-concave ones that have recently been proposed as reasonable shapes. We formulate the inverse problem and apply Tikhonov regularization. The inverse problem is discretized by finite elements and solved iteratively via a preconditioned gradient descent approach. Numerical results for the reconstruction of the production function are given and analysed at the end of this paper.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Laplace priors and spatial inhomogeneity in Bayesian inverse problems
    Agapiou, Sergios
    Wang, Sven
    BERNOULLI, 2024, 30 (02) : 878 - 910
  • [42] Parameter identification for elliptic boundary value problems: an abstract framework and applications
    Hoffmann, Heiko
    Wald, Anne
    Tram Thi Ngoc Nguyen
    INVERSE PROBLEMS, 2022, 38 (07)
  • [43] Automatic selection of regularization parameter in inverse heat conduction problems
    Pacheco, C. C.
    Lacerda, C. R.
    Colaco, M. J.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 139
  • [44] Inverse problems for distributed parameter systems solved with combinatorial method
    Rydygier, E
    Trzaska, Z
    CONTROL AND CYBERNETICS, 1999, 28 (02): : 237 - 258
  • [45] Parameter quality conditions in open-channel inverse problems
    Khatibi, RH
    Wormleaton, PR
    Williams, JJR
    JOURNAL OF HYDRAULIC RESEARCH, 2000, 38 (06) : 447 - 458
  • [46] Parameter identification problems in the modelling of cell motility
    Croft, Wayne
    Elliott, Charles M.
    Ladds, Graham
    Stinner, Bjoern
    Venkataraman, Chandrasekhar
    Weston, Cathryn
    JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 71 (02) : 399 - 436
  • [47] Application of the Model of Spots for Inverse Problems
    Simonov, Nikolai A.
    SENSORS, 2023, 23 (03)
  • [48] Model Adaptation for Inverse Problems in Imaging
    Gilton, Davis
    Ongie, Gregory
    Willett, Rebecca
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 661 - 674
  • [49] Inverse Problems and Model Reduction Techniques
    Luis Fernandez-Martinez, Juan
    Tompkins, Michael
    Fernandez-Muniz, Zulima
    Mukerji, Tapan
    COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS, 2010, 77 : 255 - +
  • [50] Parameter identification problems in the modelling of cell motility
    Wayne Croft
    Charles M. Elliott
    Graham Ladds
    Björn Stinner
    Chandrasekhar Venkataraman
    Cathryn Weston
    Journal of Mathematical Biology, 2015, 71 : 399 - 436