Inverse problems in geographical economics: parameter identification in the spatial Solow model

被引:7
|
作者
Engbers, Ralf [1 ]
Burger, Martin [1 ]
Capasso, Vincenzo [2 ,3 ]
机构
[1] Univ Munster, Inst Computat & Appl Math, D-48149 Munster, Germany
[2] Univ Milan, Dept Math, Interdisciplinary Ctr Adv Appl Math & Stat Sci AD, I-20133 Milan, Italy
[3] Univ Carlos III Madrid, Escuela Politecn Super, Gregorio Millan Inst, Leganes 28911, Spain
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2014年 / 372卷 / 2028期
关键词
inverse problems; parameter identification; geographical economics; spatial Solow model; production function; INCREASING RETURNS; GROWTH;
D O I
10.1098/rsta.2013.0402
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The identification of production functions from data is an important task in the modelling of economic growth. In this paper, we consider a non-parametric approach to this identification problem in the context of the spatial Solow model which allows for rather general production functions, in particular convex-concave ones that have recently been proposed as reasonable shapes. We formulate the inverse problem and apply Tikhonov regularization. The inverse problem is discretized by finite elements and solved iteratively via a preconditioned gradient descent approach. Numerical results for the reconstruction of the production function are given and analysed at the end of this paper.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] PARAMETER IDENTIFICATION IN QUASISTATIONARY THERMOELASTIC PROBLEMS
    Sergienko, I. V.
    Deineka, V. S.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2010, 46 (02) : 220 - 242
  • [32] Inverse Problems of Finding the Absorption Parameter in the Diffusion Equation
    Kozhanov, A. I.
    MATHEMATICAL NOTES, 2019, 106 (3-4) : 378 - 389
  • [33] A distance-based prior model parameterization for constraining solutions of spatial inverse problems
    Suzuki, Satomi
    Caers, Jef
    MATHEMATICAL GEOSCIENCES, 2008, 40 (04) : 445 - 469
  • [34] A Distance-based Prior Model Parameterization for Constraining Solutions of Spatial Inverse Problems
    Satomi Suzuki
    Jef Caers
    Mathematical Geosciences, 2008, 40 : 445 - 469
  • [35] Metamodel-based inverse method for parameter identification: elastic-plastic damage model
    Huang, Changwu
    El Hami, Abdelkhalak
    Radi, Bouchaib
    ENGINEERING OPTIMIZATION, 2017, 49 (04) : 633 - 653
  • [36] CLUSTER NEWTON METHOD FOR SAMPLING MULTIPLE SOLUTIONS OF UNDERDETERMINED INVERSE PROBLEMS: APPLICATION TO A PARAMETER IDENTIFICATION PROBLEM IN PHARMACOKINETICS
    Aoki, Yasunori
    Hayami, Ken
    De Sterck, Hans
    Konagaya, Akihiko
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (01) : B14 - B44
  • [37] Inverse Methodology for the Parameter Identification of a Lumped Parameter Thermal Network for an Induction Machine
    Phuc, Pieter Nguyen
    Stockman, Kurt
    Crevecoeur, Guillaume
    2018 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION (SPEEDAM), 2018, : 298 - 303
  • [38] INVERSE PROBLEMS OF PARAMETER RECOVERY IN DIFFERENTIAL EQUATION WITH MULTIPLE CHARACTERISTICS
    Kozhanov, A., I
    Abylkayrov, U. U.
    Ashurova, G. R.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2022, 113 (01): : 3 - 16
  • [39] Guided Deep Generative Model-Based Spatial Regularization for Multiband Imaging Inverse Problems
    Zhao M.
    Dobigeon N.
    Chen J.
    IEEE Transactions on Image Processing, 2023, 32 : 5692 - 5704
  • [40] Adaptive reduced basis trust region methods for parameter identification problems
    Michael Kartmann
    Tim Keil
    Mario Ohlberger
    Stefan Volkwein
    Barbara Kaltenbacher
    Computational Science and Engineering, 1 (1):