Inverse problems in geographical economics: parameter identification in the spatial Solow model

被引:7
|
作者
Engbers, Ralf [1 ]
Burger, Martin [1 ]
Capasso, Vincenzo [2 ,3 ]
机构
[1] Univ Munster, Inst Computat & Appl Math, D-48149 Munster, Germany
[2] Univ Milan, Dept Math, Interdisciplinary Ctr Adv Appl Math & Stat Sci AD, I-20133 Milan, Italy
[3] Univ Carlos III Madrid, Escuela Politecn Super, Gregorio Millan Inst, Leganes 28911, Spain
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2014年 / 372卷 / 2028期
关键词
inverse problems; parameter identification; geographical economics; spatial Solow model; production function; INCREASING RETURNS; GROWTH;
D O I
10.1098/rsta.2013.0402
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The identification of production functions from data is an important task in the modelling of economic growth. In this paper, we consider a non-parametric approach to this identification problem in the context of the spatial Solow model which allows for rather general production functions, in particular convex-concave ones that have recently been proposed as reasonable shapes. We formulate the inverse problem and apply Tikhonov regularization. The inverse problem is discretized by finite elements and solved iteratively via a preconditioned gradient descent approach. Numerical results for the reconstruction of the production function are given and analysed at the end of this paper.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A new method to solve the forward and inverse problems for the spatial Solow model by using Physics Informed Neural Networks (PINNs)
    Hu, Wanjuan
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 169
  • [2] INVERSE PROBLEMS OF PARAMETER IDENTIFICATION IN PARTIAL DIFFERENTIAL EQUATIONS
    Jadamba, B.
    Khan, A. A.
    Sama, M.
    MATHEMATICS IN SCIENCE AND TECHNOLOGY: MATHEMATICAL METHODS, MODELS AND ALGORITHMS IN SCIENCE AND TECHNOLOGY, 2011, : 228 - 258
  • [3] Differential evolution algorithm of solving an inverse problem for the spatia Solow mathematical model
    Kabanikhin, Sergey
    Krivorotko, Olga
    Bektemessov, Zholaman
    Bektemessov, Maktagali
    Zhang, Shuhua
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (05): : 761 - 774
  • [4] Spatial Dynamics for a Generalized Solow Growth Model
    Zhong, Yue
    Huang, Wenyi
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [5] Model structure and land parameter identification: An inverse problem approach
    Tsuang, BJ
    Tu, CY
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D10)
  • [6] Parameter identification using optimization techniques in open-channel inverse problems
    Roux, H
    Dartus, D
    JOURNAL OF HYDRAULIC RESEARCH, 2005, 43 (03) : 311 - 320
  • [7] An efficient and accurate parameter identification scheme for inverse Helmholtz problems using SLICM
    Qian, Zhihao
    Hu, Minghao
    Wang, Lihua
    Wahab, Magd Abdel
    COMPUTATIONAL MECHANICS, 2025, 75 (02) : 723 - 753
  • [8] CONVERGENCE RATES FOR NONLINEAR INVERSE PROBLEMS OF PARAMETER IDENTIFICATION USING BREGMAN DISTANCES
    Hao, Dinh Nho
    Khan, Akhtar A.
    Reich, Simeon
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2023, 7 (05): : 715 - 726
  • [9] Inverse Rheological Hysteresis Model and its Efficient Parameter Identification Method
    Liu, Ren
    Lu, Youhao
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (03)
  • [10] Parameter identification of soil hyperbolic constitutive model by inverse analysis procedure
    Li, Shouju
    Liu, Yingxi
    Cao, Haiyun
    Cheng, Dong
    ENGINEERING PLASTICITY AND ITS APPLICATIONS FROM NANOSCALE TO MACROSCALE, PTS 1 AND 2, 2007, 340-341 : 1231 - +