Nonparametric Monotone Classification with MOCA

被引:11
作者
Barile, Nicola [1 ]
Feelders, Ad [1 ]
机构
[1] Univ Utrecht, NL-3508 TC Utrecht, Netherlands
来源
ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS | 2008年
关键词
D O I
10.1109/ICDM.2008.54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a monotone classification algorithm called MOCA that attempts to minimize the mean absolute prediction error for classification problems with ordered class labels. We first find a monotone classifier with minimum L-1 loss on the training sample, and then use a simple interpolation scheme to predict the class labels for attribute vectors not present in the training data. We compare MOCA to the Ordinal Stochastic Dominance Learner (OSDL), on artificial as well as real data sets. We show that MOCA often outperforms OS D L with respect to mean absolute prediction error\
引用
收藏
页码:731 / 736
页数:6
相关论文
共 13 条
[1]  
Anglin PM, 1996, J APPL ECONOMET, V11, P633, DOI 10.1002/(SICI)1099-1255(199611)11:6<633::AID-JAE414>3.0.CO
[2]  
2-T
[3]  
[Anonymous], THESIS U GENT
[4]  
Asuncion A., 2007, Uci machine learning repository
[5]  
Ben-David A., 1989, Computational Intelligence, V5, P45, DOI 10.1111/j.1467-8640.1989.tb00314.x
[6]   CONDITIONAL-EXPECTATION GIVEN A SIGMA-LATTICE AND APPLICATIONS [J].
BRUNK, HD .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (05) :1339-1350
[7]   Nonparametric, isotonic discriminant procedures [J].
Dykstra, R ;
Hewett, J ;
Robertson, T .
BIOMETRIKA, 1999, 86 (02) :429-438
[8]   Inferences under a stochastic ordering constraint:: The k-sample case [J].
El Barmi, H ;
Mukerjee, H .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) :252-261
[9]  
FEELDERS A, 2007, P UNC ART INT 2007 U, P117
[10]   ON MODELS AND HYPOTHESES WITH RESTRICTED ALTERNATIVES [J].
HOGG, RV .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1965, 60 (312) :1153-1162