On vector bundles over surfaces and Hilbert schemes

被引:0
作者
Biswas, Indranil [1 ]
Nagaraj, D. S. [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
Hilbert scheme; Algebraic surface; Semistability; Direct image; PROJECTIVE VARIETIES; CURVES;
D O I
10.1007/s00013-013-0589-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be an irreducible smooth projective surface over and Hilb (d) (X) the Hilbert scheme parametrizing the zero-dimensional subschemes of X of length d. Given a vector bundle E on X, there is a naturally associated vector bundle over Hilb (d) (X). If E and V are semistable vector bundles on X such that and are isomorphic, we prove that E is isomorphic to V. A key input in the proof is provided by Biswas and Nagaraj (see [1]).
引用
收藏
页码:513 / 517
页数:5
相关论文
共 8 条
[1]  
[Anonymous], PRINCIPLES ALGEBRAIC
[2]  
[Anonymous], P LOND MATH SOC
[3]   Reconstructing vector bundles on curves from their direct image on symmetric powers [J].
Biswas, Indranil ;
Nagaraj, D. S. .
ARCHIV DER MATHEMATIK, 2012, 99 (04) :327-331
[4]   RESTRICTIONS OF SEMISTABLE BUNDLES ON PROJECTIVE VARIETIES [J].
FLENNER, H .
COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (04) :635-650
[5]   ALGEBRAIC FAMILIES ON AN ALGEBRAIC SURFACE [J].
FOGARTY, J .
AMERICAN JOURNAL OF MATHEMATICS, 1968, 90 (02) :511-&
[6]  
Huybrechts D., 1997, Aspects in Mathematics
[7]   SEMI-STABLE SHEAVES ON PROJECTIVE VARIETIES AND THEIR RESTRICTION TO CURVES [J].
MEHTA, VB ;
RAMANATHAN, A .
MATHEMATISCHE ANNALEN, 1982, 258 (03) :213-224
[8]  
SKJELNES R. M., HILBERT SCHEME POINT