Flow Structure and Turbulence in Wind Farms

被引:381
作者
Stevens, Richard J. A. M. [1 ,2 ]
Meneveau, Charles [3 ]
机构
[1] Univ Twente, Dept Sci & Technol, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, JM Burgers Ctr Fluid Dynam, NL-7500 AE Enschede, Netherlands
[3] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
来源
ANNUAL REVIEW OF FLUID MECHANICS, VOL 49 | 2017年 / 49卷
基金
美国国家科学基金会;
关键词
wind energy; wake models; wind turbine arrays; large-eddy simulations; atmospheric boundary layer; renewable power production; LARGE-EDDY SIMULATION; BOUNDARY-LAYER-FLOW; 2; IN-LINE; TURBINE WAKES; ATMOSPHERIC STABILITY; NUMERICAL SIMULATIONS; POWER LOSSES; CLIMATIC IMPACTS; ANALYTICAL-MODEL; ACTUATOR DISC;
D O I
10.1146/annurev-fluid-010816-060206
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Similar to other renewable energy sources, wind energy is characterized by a low power density. Hence, for wind energy to make considerable contributions to the world's overall energy supply, large wind farms (on- and offshore) consisting of arrays of ever larger wind turbines are being envisioned and built. From a fluid mechanics perspective, wind farms encompass turbulent flow phenomena occurring at many spatial and temporal scales. Of particular interest to understanding mean power extraction and fluctuations in wind farms are the scales ranging from 1 to 10 m that comprise the wakes behind individual wind turbines, to motions reaching 100 m to kilometers in scale, inherently associated with the atmospheric boundary layer. In this review, we summarize current understanding of these flow phenomena (particularly mean and second-order statistics) through field studies, wind tunnel experiments, large-eddy simulations, and analytical modeling, emphasizing the most relevant features for wind farm design and operation.
引用
收藏
页码:311 / 339
页数:29
相关论文
共 187 条
[51]   Boundary-layer anemometry by optical remote sensing for Wind energy applications [J].
Emeis, Stefan ;
Harris, Michael ;
Banta, Robert M. .
METEOROLOGISCHE ZEITSCHRIFT, 2007, 16 (04) :337-347
[52]   Wake downstream of the Lillgrund wind farm - A Comparison between LES using the actuator disc method and a Wind farm Parametrization in WRF [J].
Eriksson, O. ;
Lindvall, J. ;
Breton, S-P ;
Ivanell, S. .
WAKE CONFERENCE 2015, 2015, 625
[53]   Parameterization of Wind Farms in Climate Models [J].
Fitch, Anna C. ;
Olson, Joseph B. ;
Lundquist, Julie K. .
JOURNAL OF CLIMATE, 2013, 26 (17) :6439-6458
[54]   Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model [J].
Fitch, Anna C. ;
Olson, Joseph B. ;
Lundquist, Julie K. ;
Dudhia, Jimy ;
Gupta, Alok K. ;
Michalakes, John ;
Barstad, Idar .
MONTHLY WEATHER REVIEW, 2012, 140 (09) :3017-3038
[55]   Analytical modelling of wind speed deficit in large offshore wind forms [J].
Frandsen, S ;
Barthelmie, R ;
Pryor, S ;
Rathmann, O ;
Larsen, S ;
Hojstrup, J ;
Thogersen, M .
WIND ENERGY, 2006, 9 (1-2) :39-53
[56]   ON THE WIND-SPEED REDUCTION IN THE CENTER OF LARGE CLUSTERS OF WIND TURBINES [J].
FRANDSEN, S .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1992, 39 (1-3) :251-265
[57]  
Frandsen S., 1999, Wind Engineering, V23, P327
[58]  
GARRATT J.R., 1992, ATMOSPHERIC BOUNDARY
[59]   Impact of Wind Farm Placement on Inter-area Oscillations in Large Power Systems [J].
Gayme, Dennice F. ;
Chakrabortty, Aranya .
2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, :3038-3043
[60]   Wind plant power optimization through yaw control using a parametric model for wake effects-a CFD simulation study [J].
Gebraad, P. M. O. ;
Teeuwisse, F. W. ;
van Wingerden, J. W. ;
Fleming, P. A. ;
Ruben, S. D. ;
Marden, J. R. ;
Pao, L. Y. .
WIND ENERGY, 2016, 19 (01) :95-114