Turing-Hopf instabilities through a combination of diffusion, advection, and finite size effects

被引:2
|
作者
Galhotra, Sainyam [1 ]
Bhattacharjee, J. K. [2 ]
Agarwalla, Bijay Kumar [3 ,4 ]
机构
[1] IIT Delhi, Dept Comp Sci & Engn, New Delhi 110016, India
[2] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India
[3] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[4] Natl Univ Singapore, Ctr Computat Sci & Engn, Singapore 117542, Singapore
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 140卷 / 02期
关键词
BIOLOGICAL PATTERN-FORMATION; DIFFERENTIAL FLOW; PARAMETER SPACE; SYSTEM; BIFURCATION; MODEL;
D O I
10.1063/1.4859259
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We show that in a reaction diffusion system on a two-dimensional substrate with advection in the confined direction, the drift (advection) induced instability occurs through a Hopf bifurcation, which can become a double Hopf bifurcation. The box size in the direction of the drift is a vital parameter. Our analysis involves reduction to a low dimensional dynamical system and constructing amplitude equations. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] SPATIOTEMPORAL ATTRACTORS GENERATED BY THE TURING-HOPF BIFURCATION IN A TIME-DELAYED REACTION-DIFFUSION SYSTEM
    An, Qi
    Jiang, Weihua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (02): : 487 - 510
  • [22] Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion
    Tang, Xiaosong
    Song, Yongli
    Zhang, Tonghua
    NONLINEAR DYNAMICS, 2016, 86 (01) : 73 - 89
  • [23] Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System
    Yuan Xu-Jin
    Shao Xin
    Liao Hui-Min
    Ouyang Qi
    CHINESE PHYSICS LETTERS, 2009, 26 (02)
  • [24] Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations
    Baurmann, Martin
    Gross, Thilo
    Feudel, Ulrike
    JOURNAL OF THEORETICAL BIOLOGY, 2007, 245 (02) : 220 - 229
  • [25] Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system
    Just, W.
    Bose, M.
    Bose, S.
    Engel, H.
    Schöll, E.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (2 II): : 262191 - 262191
  • [26] TURING-HOPF BIFURCATION IN THE REACTION-DIFFUSION SYSTEM WITH DELAY AND APPLICATION TO A DIFFUSIVE PREDATOR-PREY MODEL
    Song, Yongli
    Jiang, Heping
    Yuan, Yuan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (03): : 1132 - 1164
  • [27] Spatiotemporal dynamics near the Turing-Hopf bifurcation in a toxic-phytoplankton-zooplankton model with cross-diffusion
    Wang, Wen
    Liu, Shutang
    Liu, Zhibin
    NONLINEAR DYNAMICS, 2019, 98 (01) : 27 - 37
  • [28] Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation
    Steyn-Ross, Moira L.
    Steyn-Ross, D. A.
    Sleigh, J. W.
    PHYSICAL REVIEW X, 2013, 3 (02):
  • [29] Turing-Hopf Bifurcation and Spatio-Temporal Patterns of a Ratio-Dependent Holling-Tanner Model with Diffusion
    An, Qi
    Jiang, Weihua
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (09):
  • [30] Effect of intestinal permeability and phagocytes diffusion rate on pattern structure of Crohn's disease based on the Turing-Hopf bifurcation
    Shi, Yu
    Luo, Xiao-Feng
    Zhang, Yong-Xin
    Sun, Gui-Quan
    NONLINEAR DYNAMICS, 2024, 112 (13) : 11419 - 11445