Reconfigurable Intelligent Surface-Enhanced Broadband OFDM Communication Based on Deep Reinforcement Learning

被引:4
作者
Huang, Wenting [1 ]
Chen, Yijian [2 ,3 ]
Wang, Jue [4 ]
Li, Xiao [1 ,5 ]
Jin, Shi [1 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] ZTE Corp, Shenzhen 518057, Peoples R China
[3] State Key Lab Mobile Network & Mobile Multimedia, Shenzhen 518057, Peoples R China
[4] Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
[5] Pazhou Lab, Guangzhou 510330, Peoples R China
来源
2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL) | 2021年
基金
中国国家自然科学基金;
关键词
Reconfigurable intelligent surface; OFDM; deep reinforcement learning; water filling; REFLECTING SURFACE; PARADIGM; DESIGN;
D O I
10.1109/VTC2021-FALL52928.2021.9625451
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the downlink OFDM transmission assisted by reconfigurable intelligent surface (RIS). With single antenna implemented at both the base station (BS) and each user, we focus on the design of the phase shifts for the RIS, as well as power allocation on each subcarrier to improve the spectrum efficiency. To reduce the computation delay, we propose a deep reinforcement learning (DRL) based algorithm to optimize the RIS phase shift parameters, while allocating power on each subcarrier via water filling. Numerical results reveal that the proposed DRL-based framework can achieve a performance almost the same with that of successive convex approximation (SCA), while the computation delay can be greatly reduced.
引用
收藏
页数:6
相关论文
共 18 条
[1]  
Agrawal SK, 2016, PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, P3630
[2]   Reconfigurable Intelligent Surface-Based Index Modulation: A New Beyond MIMO Paradigm for 6G [J].
Basar, Ertugrul .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (05) :3187-3196
[3]   Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities [J].
ElMossallamy, Mohamed A. ;
Zhang, Hongliang ;
Song, Lingyang ;
Seddik, Karim G. ;
Han, Zhu ;
Li, Geoffrey Ye .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2020, 6 (03) :990-1002
[4]   Physical Layer Security Enhancement Exploiting Intelligent Reflecting Surface [J].
Feng, Keming ;
Li, Xiao ;
Han, Yu ;
Jin, Shi ;
Chen, Yijian .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (03) :734-738
[5]   Deep Reinforcement Learning Based Intelligent Reflecting Surface Optimization for MISO Communication Systems [J].
Feng, Keming ;
Wang, Qisheng ;
Li, Xiao ;
Wen, Chao-Kai .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (05) :745-749
[6]  
Gong S., 2020, ARXIV PREPRINT ARXIV
[7]   Large Intelligent Surface-Assisted Wireless Communication Exploiting Statistical CSI [J].
Han, Yu ;
Tang, Wankai ;
Jin, Shi ;
Wen, Chao-Kai ;
Ma, Xiaoli .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (08) :8238-8242
[8]   Three-Dimensional Beamforming for Large-Scale FD-MIMO Systems Exploiting Statistical Channel State Information [J].
Li, Xiao ;
Jin, Shi ;
Gao, Xiqi ;
Heath, Robert W. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (11) :8992-9005
[9]   A New Wireless Communication Paradigm through Software-Controlled Metasurfaces [J].
Liaskos, Christos ;
Nie, Shuai ;
Tsioliaridou, Ageliki ;
Pitsillides, Andreas ;
Ioannidis, Sotiris ;
Akyildiz, Ian .
IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (09) :162-169
[10]  
Lillicrap T. P., 2015, PROC INT C LEARNING