Contour lines of the two-dimensional discrete Gaussian free field

被引:173
作者
Schramm, Oded [1 ]
Sheffield, Scott [2 ]
机构
[1] Microsoft Res, Theory Grp, Redmond, WA 98052 USA
[2] NYU, Courant Inst, New York, NY 10012 USA
关键词
BROWNIAN INTERSECTION EXPONENTS; ERASED RANDOM-WALKS; CONFORMAL-INVARIANCE; CRITICAL PERCOLATION; COULOMB GAS; MODELS; VALUES; PLANE; LIMIT;
D O I
10.1007/s11511-009-0034-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the chordal contour lines of the discrete Gaussian free field converge to forms of SLE(4). Specifically, there is a constant lambda > 0 such that when h is an interpolation of the discrete Gaussian free field on a Jordan domain-with boundary values -lambda on one boundary arc and lambda on the complementary arc-the zero level line of h joining the endpoints of these arcs converges to SLE(4) as the domain grows larger. If instead the boundary values are -a < 0 on the first arc and b > 0 on the complementary arc, then the convergence is to SLE(4; a/lambda - 1, b/lambda - 1), a variant of SLE(4).
引用
收藏
页码:21 / 137
页数:117
相关论文
共 51 条
[1]  
AHLFORS L. V., 1973, MCGRAW HILL SERIES H
[2]  
[Anonymous], 1984, CARUS MATH MONOGRAPH
[3]   The dimension of the SLE curves [J].
Beffara, Vincent .
ANNALS OF PROBABILITY, 2008, 36 (04) :1421-1452
[4]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[5]   RANDOM SURFACES IN STATISTICAL-MECHANICS - ROUGHENING, ROUNDING, WETTING [J].
BRICMONT, J ;
ELMELLOUKI, A ;
FROHLICH, J .
JOURNAL OF STATISTICAL PHYSICS, 1986, 42 (5-6) :743-798
[6]   Two-dimensional critical percolation: The full scaling limit [J].
Camia, Federico ;
Newman, Charles M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (01) :1-38
[7]   SLE for theoretical physicists [J].
Cardy, J .
ANNALS OF PHYSICS, 2005, 318 (01) :81-118
[8]   FRACTAL STRUCTURE OF ISING AND POTTS CLUSTERS - EXACT RESULTS [J].
CONIGLIO, A .
PHYSICAL REVIEW LETTERS, 1989, 62 (26) :3054-3057
[9]   EXTENDED SCALING RELATIONS FOR THE MAGNETIC CRITICAL EXPONENTS OF THE POTTS-MODEL [J].
DENNIJS, M .
PHYSICAL REVIEW B, 1983, 27 (03) :1674-1679
[10]  
Di Francesco P., 1997, CONFORMAL FIELD THEO, DOI DOI 10.1007/978-1-4612-2256-9