Anomalous heat conduction in one-dimensional momentum-conserving systems

被引:330
|
作者
Narayan, O [1 ]
Ramaswamy, S [1 ]
机构
[1] Indian Inst Sci, Dept Phys, Ctr Condensed Matter Theory, Bangalore 560012, Karnataka, India
关键词
D O I
10.1103/PhysRevLett.89.200601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that for one-dimensional fluids the thermal conductivity generically diverges with system size L as L-1/3, as a result of momentum conservation. Our results are consistent with the largest-scale numerical studies of two-component hard-particle systems. We suggest explanations for the apparent disagreement with studies on Fermi-Pasta-Ulam chains.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Diffusion of heat, energy, momentum, and mass in one-dimensional systems
    Chen, Shunda
    Zhang, Yong
    Wang, Jiao
    Zhao, Hong
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [32] Heat conduction in one-dimensional chains
    Hu, BB
    Li, BW
    Zhao, H
    PHYSICAL REVIEW E, 1998, 57 (03): : 2992 - 2995
  • [33] Anomalous Long-Ranged Influence of an Inclusion in Momentum-Conserving Active Fluids
    de Pirey, Thibaut Arnoulx
    Kafri, Yariv
    Ramaswamy, Sriram
    PHYSICAL REVIEW X, 2024, 14 (04):
  • [34] Momentum conserving one-dimensional system with a finite thermal conductivity
    Lee-Dadswell, G. R.
    Turner, E.
    Ettinger, J.
    Moy, M.
    PHYSICAL REVIEW E, 2010, 82 (06):
  • [35] CONSTRUCTAL DESIGN OF NANOFLUIDS FOR ONE-DIMENSIONAL STEADY HEAT CONDUCTION SYSTEMS
    Bai, Chao
    Wang, Li Qiu
    NANO, 2010, 5 (01) : 39 - 51
  • [36] Universality of anomalous one-dimensional heat conductivity
    Lepri, S
    Livi, R
    Politi, A
    PHYSICAL REVIEW E, 2003, 68 (06):
  • [37] Momentum conserving model with anomalous thermal conductivity in low dimensional systems
    Basile, Giada
    Bernardin, Cedric
    Olla, Stefano
    PHYSICAL REVIEW LETTERS, 2006, 96 (20)
  • [38] Heat conduction in a one-dimensional Yukawa chain
    Xie, BS
    Li, HB
    Hu, B
    EUROPHYSICS LETTERS, 2005, 69 (03): : 358 - 364
  • [39] Correlations and scaling in one-dimensional heat conduction
    Deutsch, JM
    Narayan, O
    PHYSICAL REVIEW E, 2003, 68 (04):
  • [40] Heat conduction in a one-dimensional aperiodic system
    Zhang, Y
    Zhao, H
    PHYSICAL REVIEW E, 2002, 66 (02):