Size Effect of Ordered Mesoporous Carbon Nanospheres for Anodes in Li-Ion Battery

被引:22
作者
Chang, Pei-Yi [1 ]
Bindumadhavan, Kartick [2 ]
Doong, Ruey-An [1 ,2 ]
机构
[1] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu 30013, Taiwan
[2] Natl Chiao Tung Univ, Inst Environm Engn, Hsinchu 30010, Taiwan
关键词
ordered mesoporous carbon nanospheres (OMCS); particle size distribution; Li ion batteries (LIBs); rate capability; LITHIUM BATTERIES; ELECTRODE MATERIALS; ENERGY-STORAGE; PORE-SIZE; CAPACITY; SPHERES; NANOSTRUCTURES; PERFORMANCE; OXIDATION;
D O I
10.3390/nano5042348
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The present work demonstrates the application of various sizes of ordered mesoporous carbon nanospheres (OMCS) with diameters of 46-130 nm as an active anode material for Li-ion batteries (LIB). The physical and chemical properties of OMCS have been evaluated by performing scanning electron microscopy (SEM), transmission electron microscopy (TEM), N-2 adsorption-desorption analysis; small-angle scattering system (SAXS) and X-ray diffraction (XRD). The electrochemical analysis of using various sizes of OMCS as anode materials showed high capacity and rate capability with the specific capacity up to 560 mA.h.g(-1) at 0.1 C after 85 cycles. In terms of performance at high current rate compared to other amorphous carbonaceous materials; a stable and extremely high specific capacity of 240 mA.h.g(-1) at 5 C after 15 cycles was achieved. Such excellent performance is mainly attributed to the suitable particle size distribution of OMCS and intimate contact between OMCS and conductive additives; which can be supported from the TEM images. Results obtained from this study clearly indicate the excellence of size distribution of highly integrated mesoporous structure of carbon nanospheres for LIB application.
引用
收藏
页码:2348 / 2358
页数:11
相关论文
共 41 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery [J].
Bae, Seok-Hu ;
Karthikeyan, Kaliyappan ;
Lee, Yun-Sung ;
Oh, Il-Kwon .
CARBON, 2013, 64 :527-536
[3]   An overview of graphene in energy production and storage applications [J].
Brownson, Dale A. C. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
JOURNAL OF POWER SOURCES, 2011, 196 (11) :4873-4885
[4]   Recent development of carbon materials for Li ion batteries [J].
Endo, M ;
Kim, C ;
Nishimura, K ;
Fujino, T ;
Miyashita, K .
CARBON, 2000, 38 (02) :183-197
[5]   Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance [J].
Fang, Baizeng ;
Kim, Min-Sik ;
Kim, Jung Ho ;
Lim, Sinmuk ;
Yu, Jong-Sung .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (45) :10253-10259
[6]   Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets: Synthesis and Efficient Lithium Ion Storage [J].
Fang, Yin ;
Lv, Yingying ;
Che, Renchao ;
Wu, Haoyu ;
Zhang, Xuehua ;
Gu, Dong ;
Zheng, Gengfeng ;
Zhao, Dongyuan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1524-1530
[7]   A Low-Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size [J].
Fang, Yin ;
Gu, Dong ;
Zou, Ying ;
Wu, Zhangxiong ;
Li, Fuyou ;
Che, Renchao ;
Deng, Yonghui ;
Tu, Bo ;
Zhao, Dongyuan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (43) :7987-7991
[8]   Surface modifications of electrode materials for lithium ion batteries [J].
Fu, LJ ;
Liu, H ;
Li, C ;
Wu, YP ;
Rahm, E ;
Holze, R ;
Wu, HQ .
SOLID STATE SCIENCES, 2006, 8 (02) :113-128
[9]   Development of efficient carbon anode material for a high-power and long-life lithium ion battery [J].
Fujimoto, Hiroyuki .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :5019-5024
[10]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176