Rings with each right ideal automorphism-invariant

被引:21
作者
Kosan, M. Tamer [1 ]
Truong Cong Quynh [2 ]
Srivastava, Ashish K. [3 ]
机构
[1] Gebze Tech Univ, Dept Math, TR-41400 Gebze, Turkey
[2] Danang Univ, Dept Math, Da Nang City, Vietnam
[3] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA
关键词
MODULES;
D O I
10.1016/j.jpaa.2015.09.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study rings having the property that every right ideal is automorphism-invariant. Such rings are called right a-rings. It is shown that (1) a right a-ring is a direct sum of a square-full semisimple artinian ring and a right square-free ring, (2) a ring R is semisimple artinian if and only if the matrix ring M-n(R) is a right a-ring for some n > 1, (3) every right a-ring is stably-finite, (4) a right a-ring is von Neumann regular if and only if it is semiprime, and (5) a prime right a-ring is simple artinian. We also describe the structure of an indecomposable right artinian right non-singular right a-ring as a triangular matrix ring of certain block matrices. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1525 / 1537
页数:13
相关论文
共 37 条
[1]   Automorphism-invariant modules [J].
Alahmadi, Abel ;
Facchini, Alberto ;
Nguyen Khanh Tung .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2015, 133 :241-259
[2]  
ANDERSON F., 1992, Rings and Categories of Modules
[3]  
[Anonymous], B AUST MATH SOC
[4]  
[Anonymous], B AUST MATH SOC
[5]  
[Anonymous], J LOND MATH SOC
[6]   The structure of right continuous right π-rings [J].
Beidar, KI ;
Jain, SK .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (01) :315-332
[7]   An example of a right q-ring [J].
Beidar, KI ;
Fong, Y ;
Ke, WF ;
Jain, SK .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 127 (1) :303-316
[8]  
Burgess W.D., 1979, CAN MATH BULLETIN, V22, P159, DOI 10.4153/CMB-1979-022-8
[9]   RIGHT SELF-INJECTIVE RINGS WHOSE ESSENTIAL RIGHT IDEALS ARE 2-SIDED [J].
BYRD, KA .
PACIFIC JOURNAL OF MATHEMATICS, 1979, 82 (01) :23-41
[10]   Simple rings with injectivity conditions on one-sided ideals [J].
Clark, John ;
Van Huynh, Dinh .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (02) :315-320