Stability of constant steady states and existence of unbounded solutions in time to a reaction-diffusion equation modelling chemotaxis

被引:5
作者
Nagai, T [1 ]
Nakaki, T
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Math, Higashihiroshima 7398526, Japan
[2] Kyushu Univ, Fac Math, Fukuoka 8128581, Japan
关键词
reaction-diffusion equations; chemotaxis; stability of steady states; unbounded solutions;
D O I
10.1016/j.na.2003.11.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial boundary value problem to a reaction-diffusion equation modelling chemotaxis in one space-dimension under Neumann boundary conditions. We study the stability of constant steady states and show that there exists an unbounded solution in time induced by the instability of constant steady states. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:657 / 681
页数:25
相关论文
共 24 条
[1]  
Alikakos N. D., 1979, Comm. Partial Differential Equations, V4, P827, DOI DOI 10.1080/03605307908820113
[2]  
Biler P., 1998, Adv. Math. Sci. Appl., V8, P715
[3]   NON-LINEAR ASPECTS OF CHEMOTAXIS [J].
CHILDRESS, S ;
PERCUS, JK .
MATHEMATICAL BIOSCIENCES, 1981, 56 (3-4) :217-237
[4]   Symmetrization techniques on unbounded domains:: Application to a chemotaxis system on RN [J].
Diaz, JI ;
Nagai, T ;
Rakotoson, JM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (01) :156-183
[5]   Global behaviour of a reaction-diffusion system modelling chemotaxis [J].
Gajewski, H ;
Zacharias, K .
MATHEMATISCHE NACHRICHTEN, 1998, 195 :77-114
[6]  
Harada G., 2001, ADV DIFFERENTIAL EQU, V6, P1255
[7]  
Henry D., 1981, GEOMETRIC THEORY SEM, DOI [10.1007/BFb0089647, DOI 10.1007/BFB0089647]
[8]  
Herrero M. A., 1998, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V24, P633
[9]   Chemotactic collapse for the Keller-Segel model [J].
Herrero, MA ;
Velazquez, JJL .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) :177-194
[10]   Blow-up in a chemotaxis model without symmetry assumptions [J].
Horstmann, D ;
Wang, GF .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2001, 12 :159-177