Sequential Patterns for Spatio-Temporal Traffic Prediction

被引:0
作者
Almuhisen, Feda [1 ]
Durand, Nicolas [1 ]
Brenner, Leonardo [1 ]
Quafafou, Mohamed [1 ]
机构
[1] Aix Marseille Univ, Univ Toulon, CNRS, LIS, Marseille, France
来源
2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2021) | 2021年
关键词
Closed sequential patterns; emerging patterns; Markov chains; moving object trajectory data; traffic prediction and monitoring;
D O I
10.1145/3486622.3493977
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a method for predicting the traffic status of a city within time windows. The method takes advantage of space-partitioning, closed sequential pattern extraction, emerging pattern detection, and Markov chain modeling. From trajectories, we identify active regions in which moving objects mostly visit. The traffic status of each region is detected based on continuous tracking of closed sequential patterns evolution over time. Based on the proposed Markov model, the near-future status of traffic is then predicted. The traffic status is reported on maps and can be used to enhance future city transportation. The experiments on real-world data sets show that the proposed method provides promising results.
引用
收藏
页码:595 / 602
页数:8
相关论文
共 30 条
[1]  
Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
[2]   Sequential Formal Concepts over Time for Trajectory Analysis [J].
Almuhisen, Feda ;
Durand, Nicolas ;
Quafafou, Mohamed .
2018 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2018), 2018, :598-603
[3]   Detecting behavior types of moving object trajectories [J].
AlMuhisen F. ;
Durand N. ;
Quafafou M. .
International Journal of Data Science and Analytics, 2018, 5 (2-3) :169-187
[4]  
[Anonymous], 1999, 5 ACM SIGKDD INT C K, DOI [DOI 10.1145/312129.312191, 10.1145/312129.312191]
[5]   A two-stage road traffic congestion prediction and resource dispatching toward a self-organizing traffic control system [J].
Bouyahia, Zied ;
Haddad, Hedi ;
Jabeur, Nafaa ;
Yasar, Ansar .
PERSONAL AND UBIQUITOUS COMPUTING, 2019, 23 (5-6) :909-920
[6]   PEPS2007 - Stochastic automata networks software tool [J].
Brenner, Leonardo ;
Fernandest, Paulo ;
Plateau, Brigitte ;
Sbeity, Ihab .
FOURTH INTERNATIONAL CONFERENCE ON THE QUANTITATIVE EVALUATION OF SYSTEMS, 2007, :163-164
[7]  
Cesario E, 2014, INTERNET THINGS-TECH, P143, DOI 10.1007/978-3-319-00491-4_8
[8]  
Fournier-Viger P., 2017, Data Sci. Pattern Recogn, V1, P54
[9]   The SPMF Open-Source Data Mining Library Version 2 [J].
Fournier-Viger, Philippe ;
Lin, Jerry Chun-Wei ;
Gomariz, Antonio ;
Gueniche, Ted ;
Soltani, Azadeh ;
Deng, Zhihong ;
Hoang Thanh Lam .
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2016, PT III, 2016, 9853 :36-40
[10]  
Garriga G. C., 2013, FORMAL METHODS MININ, P21