Harnack inequality for a subelliptic PDE in nondivergence form

被引:8
作者
Montanari, Annamaria [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
关键词
Non divergence subelliptic PDE's with measurable coefficients; Grushin vector fields; Weighted Aleksandrov- Bakelman-Pucci estimate; Carnot-Caratheodory metric; Critical density; Double ball property; Power decay property; Invariant Harnack's inequality; LIPSCHITZ-CONTINUOUS GRAPHS; LEVI CURVATURE; CARNOT GROUPS; PRINCIPLES; OPERATORS; EQUATION; MAXIMUM;
D O I
10.1016/j.na.2014.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider subelliptic equations in non divergence form of the type Lu = Sigma(i <= j) a(ij)X(j)X(i)u = 0 where X-j are the Grushin vector fields, and the matrix coefficient is uniformly elliptic. We obtain a scale invariant Harnack's inequality on the X-j's CC balls for nonnegative solutions under the only assumption that the ratio between the maximum and minimum eigenvalues of the coefficient matrix is bounded. In the paper we first prove a weighted Aleksandrov-Bakelman-Pucci estimate, and then we show a critical density estimate, the double ball property and the power decay property. Once this is established, Harnack's inequality follows directly from the axiomatic theory developed by Di Fazio, Gutierrez and Lanconelli in Di Fazio et al. (2008). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:285 / 300
页数:16
相关论文
共 23 条
[1]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[2]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[3]  
Cabre Xavier, 1995, AM MATH SOC C PUBLIC, V43
[4]   Smoothness of Lipschitz-continuous graphs with nonvanishing Levi curvature [J].
Citti, G ;
Lanconelli, E ;
Montanari, A .
ACTA MATHEMATICA, 2002, 188 (01) :87-128
[5]   Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature [J].
Da Lio, F ;
Montanari, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (01) :1-28
[6]   On the best possible character of the LQ norm in some a priori estimates for non-divergence form equations in Carnot groups [J].
Danielli, D ;
Garofalo, N ;
Nhieu, DM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (11) :3487-3498
[7]   Covering theorems, inequalities on metric spaces and applications to PDE's [J].
Di Fazio, Giuseppe ;
Gutierrez, Cristian E. ;
Lanconelli, Ermanno .
MATHEMATISCHE ANNALEN, 2008, 341 (02) :255-291
[8]  
Federer Herbert, 1969, GEOMETRIC MEASURE TH
[9]  
Fefferman C., 1983, WADSWORTH MATH SER, P590
[10]  
Franchi Bruno., 1983, REND SEM MAT U POLIT, P105