scShaper: an ensemble method for fast and accurate linear trajectory inference from single-cell RNA-seq data

被引:8
作者
Smolander, Johannes [1 ,2 ]
Junttila, Sini [1 ,2 ]
Venalainen, Mikko S. [1 ,2 ]
Elo, Laura L. [1 ,2 ,3 ]
机构
[1] Univ Turku, Turku Biosci Ctr, Tykistokatu 6, Turku 20520, Finland
[2] Abo Akad Univ, Tykistokatu 6, Turku 20520, Finland
[3] Univ Turku, Inst Biomed, Turku 20520, Finland
基金
芬兰科学院; 欧洲研究理事会;
关键词
D O I
10.1093/bioinformatics/btab831
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Computational models are needed to infer a representation of the cells, i.e. a trajectory, from single-cell RNA-sequencing data that model cell differentiation during a dynamic process. Although many trajectory inference methods exist, their performance varies greatly depending on the dataset and hence there is a need to establish more accurate, better generalizable methods. Results: We introduce scShaper, a new trajectory inference method that enables accurate linear trajectory inference. The ensemble approach of scShaper generates a continuous smooth pseudo-time based on a set of discrete pseudotimes. We demonstrate that scShaper is able to infer accurate trajectories for a variety of trigonometric trajectories, including many for which the commonly used principal curves method fails. A comprehensive benchmarking with state-of-the-art methods revealed that scShaper achieved superior accuracy of the cell ordering and, in particular, the differentially expressed genes. Moreover, scShaper is a fast method with few hyperparameters, making it a promising alternative to the principal curves method for linear pseudotemporal ordering.
引用
收藏
页码:1328 / 1335
页数:8
相关论文
共 50 条
[21]   Bayesian inference of gene expression states from single-cell RNA-seq data [J].
Jérémie Breda ;
Mihaela Zavolan ;
Erik van Nimwegen .
Nature Biotechnology, 2021, 39 :1008-1016
[22]   SHARP: hyperfast and accurate processing of single-cell RNA-seq data via ensemble random projection [J].
Wan, Shibiao ;
Kim, Junil ;
Won, Kyoung Jae .
GENOME RESEARCH, 2020, 30 (02) :205-213
[23]   Fast and accurate approximate inference of transcript expression from RNA-seq data [J].
Hensman, James ;
Papastamoulis, Panagiotis ;
Glaus, Peter ;
Honkela, Antti ;
Rattray, Magnus .
BIOINFORMATICS, 2015, 31 (24) :3881-3889
[24]   scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data [J].
Jose Alquicira-Hernandez ;
Anuja Sathe ;
Hanlee P. Ji ;
Quan Nguyen ;
Joseph E. Powell .
Genome Biology, 20
[25]   TiC2D: Trajectory Inference From Single-Cell RNA-Seq Data Using Consensus Clustering [J].
Gan, Yanglan ;
Li, Ning ;
Guo, Cheng ;
Zou, Guobing ;
Guan, Jihong ;
Zhou, Shuigeng .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (04) :2512-2522
[26]   Ensemble Classification through Random Projections for Single-Cell RNA-Seq Data [J].
Vrahatis, Aristidis G. ;
Tasoulis, Sotiris K. ;
Georgakopoulos, Spiros V. ;
Plagianakos, Vassilis P. .
INFORMATION, 2020, 11 (11) :1-14
[27]   TsImpute: an accurate two-step imputation method for single-cell RNA-seq data [J].
Zheng, Weihua ;
Min, Wenwen ;
Wang, Shunfang .
BIOINFORMATICS, 2023, 39 (12)
[28]   Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data [J].
Chen, Siqi ;
Yan, Xuhua ;
Zheng, Ruiqing ;
Li, Min .
BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
[29]   scTrans: Sparse attention powers fast and accurate cell type annotation in single-cell RNA-seq data [J].
Zou, Zhiyi ;
Liu, Ying ;
Bai, Yuting ;
Luo, Jiawei ;
Zhang, Zhaolei .
PLOS COMPUTATIONAL BIOLOGY, 2025, 21 (04)
[30]   Secuer: Ultrafast, scalable and accurate clustering of single-cell RNA-seq data [J].
Wei, Nana ;
Nie, Yating ;
Liu, Lin ;
Zheng, Xiaoqi ;
Wu, Hua-Jun .
PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (12)