Reynolds number scaling of velocity increments in isotropic turbulence

被引:48
作者
Iyer, Kartik P. [1 ,2 ]
Sreenivasan, Katepalli R. [3 ,4 ]
Yeung, P. K. [5 ]
机构
[1] Univ Roma Tor Vergata, Dept Phys, I-00133 Rome, Italy
[2] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, I-00133 Rome, Italy
[3] NYU, Dept Phys & Mech Engn, New York, NY 11201 USA
[4] NYU, Courant Inst Math Sci, New York, NY 11201 USA
[5] Georgia Inst Technol, Schools Aerosp Engn & Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
TRANSVERSE STRUCTURE FUNCTIONS; REFINED SIMILARITY HYPOTHESIS; NUMERICAL SIMULATIONS; FLUID TURBULENCE; ANISOTROPY; FLOWS;
D O I
10.1103/PhysRevE.95.021101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the largest database of isotropic turbulence available to date, generated by the direct numerical simulation (DNS) of the Navier-Stokes equations on an 8192(3) periodic box, we show that the longitudinal and transverse velocity increments scale identically in the inertial range. By examining the DNS data at several Reynolds numbers, we infer that the contradictory results of the past on the inertial-range universality are artifacts of low Reynolds number and residual anisotropy. We further show that both longitudinal and transverse velocity increments scale on locally averaged dissipation rate, just as postulated by Kolmogorov's refined similarity hypothesis, and that, in isotropic turbulence, a single independent scaling adequately describes fluid turbulence in the inertial range.
引用
收藏
页数:6
相关论文
共 30 条
[1]  
[Anonymous], 1995, TURBULENCE LEGACY AN, DOI [10.1017/CBO9781139170666, DOI 10.1017/CBO9781139170666]
[2]   Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence [J].
Benzi, R. ;
Biferale, L. ;
Fisher, R. ;
Lamb, D. Q. ;
Toschi, F. .
JOURNAL OF FLUID MECHANICS, 2010, 653 :221-244
[3]   EXTENDED SELF-SIMILARITY IN TURBULENT FLOWS [J].
BENZI, R ;
CILIBERTO, S ;
TRIPICCIONE, R ;
BAUDET, C ;
MASSAIOLI, F ;
SUCCI, S .
PHYSICAL REVIEW E, 1993, 48 (01) :R29-R32
[4]   Anisotropy in turbulent flows and in turbulent transport [J].
Biferale, L ;
Procaccia, I .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 414 (2-3) :43-164
[5]   Hierarchy of transverse structure functions [J].
Camussi, R ;
Benzi, R .
PHYSICS OF FLUIDS, 1997, 9 (02) :257-259
[6]   Refined similarity hypothesis for transverse structure functions in fluid turbulence [J].
Chen, S ;
Sreenivasan, KR ;
Nelkin, M ;
Cao, NZ .
PHYSICAL REVIEW LETTERS, 1997, 79 (12) :2253-2256
[7]   Transverse structure functions in high-Reynolds-number turbulence [J].
Dhruva, B ;
Tsuji, Y ;
Sreenivasan, KR .
PHYSICAL REVIEW E, 1997, 56 (05) :R4928-R4930
[8]   Resolution effects and scaling in numerical simulations of passive scalar mixing in turbulence [J].
Donzis, D. A. ;
Yeung, P. K. .
PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (14) :1278-1287
[9]   Dissipation and enstrophy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations [J].
Donzis, D. A. ;
Yeung, P. K. ;
Sreenivasan, K. R. .
PHYSICS OF FLUIDS, 2008, 20 (04)
[10]   Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation [J].
Gotoh, T ;
Fukayama, D ;
Nakano, T .
PHYSICS OF FLUIDS, 2002, 14 (03) :1065-1081