Branching Measures and Nearly Acyclic NFAs

被引:2
作者
Keeler, Chris [1 ]
Salomaa, Kai [1 ]
机构
[1] Queens Univ, Sch Comp, Kingston, ON K7L 2N8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Finite automata; nondeterminism; degree of ambiguity; FINITE AUTOMATA; MEASURING NONDETERMINISM; AMBIGUITY; COMPLEXITY; MINIMIZATION;
D O I
10.1142/S012905411940032X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To get a more comprehensive understanding of the amount of branching in computations of a nondeterministic finite automaton (NFA), we introduce and study the string path width and depth path width measures. For a given NFA, the string path width on a string w counts the number of all complete computations on w, and the depth path width on an integer l counts the number of complete computations on all strings of length l. We give an algorithm to decide the finiteness of the depth path width of an NFA. Deciding finiteness of string path width can be reduced to the corresponding question on ambiguity. An NFA is nearly acyclic if any computation can pass through at most one cycle. The class of nearly acyclic NFAs consists of exactly all NFAs with finite depth path width. Using this characterization we show that the finite depth path width of an m-state NFA over a k-letter alphabet is at most (k + 1)(m-1) and that this bound is tight. The nearly acyclic NFAs recognize exactly the class of constant density regular languages.
引用
收藏
页码:1135 / 1155
页数:21
相关论文
共 30 条
[1]  
[Anonymous], 1997, Word, Lan- guage, Grammar, DOI [10.1007/978-3-642-59136-5_2, DOI 10.1007/978-3-642-59136-5_2]
[2]   The tractability frontier for NFA minimization [J].
Bjorklund, Henrik ;
Martens, Wim .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (01) :198-210
[3]   Cycle-aware minimization of acyclic deterministic finite-state automata [J].
Bubenzer, Johannes .
DISCRETE APPLIED MATHEMATICS, 2014, 163 :238-+
[4]  
CHAN TH, 1983, THEOR COMPUT SCI, V23, P95, DOI 10.1016/0304-3975(88)90012-6
[5]   FINITE AUTOMATA AND UNARY LANGUAGES [J].
CHROBAK, M .
THEORETICAL COMPUTER SCIENCE, 1986, 47 (02) :149-158
[6]  
Cormen T. H., 2009, Introduction to algorithms, VThird
[7]  
Goldstine J, 2002, J UNIVERS COMPUT SCI, V8, P193
[8]   ON THE RELATION BETWEEN AMBIGUITY AND NONDETERMINISM IN FINITE AUTOMATA [J].
GOLDSTINE, J ;
LEUNG, H ;
WOTSCHKE, D .
INFORMATION AND COMPUTATION, 1992, 100 (02) :261-270
[9]   ON MEASURING NONDETERMINISM IN REGULAR LANGUAGES [J].
GOLDSTINE, J ;
KINTALA, CMR ;
WOTSCHKE, D .
INFORMATION AND COMPUTATION, 1990, 86 (02) :179-194
[10]  
Han YS, 2017, ACTA CYBERN, V23, P141, DOI 10.14232/actacyb.23.1.2017.9