Hierarchical atom type definitions and extensible all-atom force fields

被引:26
|
作者
Jin, Zhao [1 ,2 ]
Yang, Chunwei [1 ,2 ]
Cao, Fenglei [1 ,2 ]
Li, Feng [1 ,2 ]
Jing, Zhifeng [1 ,2 ]
Chen, Long [1 ,2 ]
Shen, Zhe [1 ,2 ]
Xin, Liang [1 ,2 ]
Tong, Sijia [1 ,2 ]
Sun, Huai [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Minist Educ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Sci & Engn Comp, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
all-atom force field; atom types; extensibility; hydration free energy; organic compounds; EXPLICIT-HYDROGEN DESCRIPTION; HYDRATION FREE-ENERGIES; ALKYL FUNCTIONAL-GROUP; PHASE-EQUILIBRIA; TRANSFERABLE POTENTIALS; CONDENSED-PHASE; SMALL-MOLECULE; NUCLEIC-ACIDS; BIOMOLECULAR SIMULATION; EFFICIENT;
D O I
10.1002/jcc.24244
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:653 / 664
页数:12
相关论文
共 50 条
  • [1] Improvements in the CHARMM all-atom force fields for biomoleculles
    MacKerell, Alexander D., Jr.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U2868 - U2868
  • [2] All-atom and coarse-grained force fields for polydimethylsiloxane
    Huang, Hao
    Cao, Fenglei
    Wu, Liang
    Sun, Huai
    MOLECULAR SIMULATION, 2017, 43 (18) : 1513 - 1522
  • [3] Evaluation of All-Atom Force Fields for Anthracene Crystal Growth
    Grancic, Peter
    Bylsma, Rita
    Meekes, Hugo
    Cuppen, Herma M.
    CRYSTAL GROWTH & DESIGN, 2015, 15 (04) : 1625 - 1633
  • [4] An all-atom force field for metallocenes
    Lopes, Jose N. Canongia
    do Couto, P. Cabral
    da Piedade, Manuel E. Minas
    JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (51): : 13850 - 13856
  • [5] Improving an all-atom force field
    Mohanty, Sandipan
    Hansmann, U. H. E.
    PHYSICAL REVIEW E, 2007, 76 (01):
  • [6] Evaluation of all-atom force fields in viral capsid simulations and properties
    Teo, Ruijie D.
    Tieleman, D. Peter
    RSC ADVANCES, 2021, 12 (01) : 216 - 220
  • [7] OPLS all-atom force field for carbohydrates
    Damm, W
    Frontera, A
    TiradoRives, J
    Jorgensen, WL
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1997, 18 (16) : 1955 - 1970
  • [8] Transferable all-atom force field for hydrofluorocarbons
    Keasler, Samuel J.
    Schultz, Nathan E.
    Ross, Richard B.
    Siepmann, J. Ilja
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [9] Validation of all-atom phosphatidylcholine lipid force fields in the tensionless NPT ensemble
    Taylor, Justine
    Whiteford, Nava E.
    Bradley, Geoff
    Watson, Graeme W.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2009, 1788 (03): : 638 - 649
  • [10] Benchmarking Molecular Dynamics Force Fields for All-Atom Simulations of Biological Condensates
    Sarthak, Kumar
    Winogradoff, David
    Ge, Yingda
    Myong, Sua
    Aksimentiev, Aleksei
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (12) : 3721 - 3740