Comparing resting state fMRI de-noising approaches using multi- and single-echo acquisitions

被引:64
作者
Dipasquale, Ottavia [1 ,2 ,3 ]
Sethi, Arjun [3 ]
Lagana, Maria Marcella [2 ]
Baglio, Francesca [2 ]
Baselli, Giuseppe [1 ]
Kundu, Prantik [4 ]
Harrison, Neil A. [3 ,5 ,6 ]
Cercignani, Mara [3 ]
机构
[1] Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
[2] IRCCS Santa Maria Nascente, Fdn Don Carlo Gnocchi ONLUS, Milan, Italy
[3] Brighton & Sussex Med Sch, Clin Imaging Sci Ctr, Brighton, E Sussex, England
[4] Icahn Sch Med Mt Sinai, Brain Imaging Ctr, Sect Adv Funct Neuroimaging, New York, NY 10029 USA
[5] Sussex Partnership NHS Fdn Trust, Brighton, E Sussex, England
[6] Univ Sussex, Sackler Ctr Consciousness Sci, Brighton, E Sussex, England
关键词
FUNCTIONAL CONNECTIVITY MRI; INDEPENDENT COMPONENT ANALYSIS; BOLD-CONTRAST SENSITIVITY; DEFAULT MODE NETWORK; ARTIFACT REMOVAL; MOTION ARTIFACT; TIME-SERIES; HUMAN BRAIN; DIFFERENTIATING BOLD; CINGULATE CORTEX;
D O I
10.1371/journal.pone.0173289
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artifact removal in resting state fMRI (rfMRl) data remains a serious challenge, with even subtle head motion undermining reliability and reproducibility. Here we compared some of the most popular single-echo de-noising methods regression of Motion parameters, White matter and Cerebrospinal fluid signals (MWC method), FMRIB's ICA-based X-noiseifier (FIX) and ICA-based Automatic Removal Of Motion Artifacts (ICA-AROMA) with a multi echo approach (ME-ICA) that exploits the linear dependency of BOLD on the echo time. Data were acquired using a clinical scanner and included 30 young, healthy participants (minimal head motion) and 30 Attention Deficit Hyperactivity Disorder patients (greater head motion). De-noising effectiveness was assessed in terms of data quality after each cleanup procedure, ability to uncouple BOLD signal and motion and preservation of default mode network (DMN) functional connectivity. Most cleaning methods showed a positive impact on data quality. However, based on the investigated metrics, ME-ICA was the most robust. It minimized the impact of motion on FC even for high motion participants and preserved DMN functional connectivity structure. The high-quality results obtained using ME-ICA suggest that using a multi-echo EPI sequence, reliable rfMRl data can be obtained in a clinical setting.
引用
收藏
页数:25
相关论文
共 64 条
[1]   Disruption of large-scale brain systems in advanced aging [J].
Andrews-Hanna, Jessica R. ;
Snyder, Abraham Z. ;
Vincent, Justin L. ;
Lustig, Cindy ;
Head, Denise ;
Raichle, Marcus E. ;
Buckner, Randy L. .
NEURON, 2007, 56 (05) :924-935
[2]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[3]   Probabilistic independent component analysis for functional magnetic resonance imaging [J].
Beckmann, CF ;
Smith, SA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) :137-152
[4]   The Influence of Physiological Noise Correction on Test-Retest Reliability of Resting-State Functional Connectivity [J].
Birn, Rasmus M. ;
Cornejo, Maria Daniela ;
Molloy, Erin K. ;
Patriat, Remi ;
Meier, Timothy B. ;
Kirk, Gregory R. ;
Nair, Veena A. ;
Meyerand, M. Elizabeth ;
Prabhakaran, Vivek .
BRAIN CONNECTIVITY, 2014, 4 (07) :511-522
[5]   Physiological noise in brainstem fMRI [J].
Brooks, Jonathan C. W. ;
Faull, Olivia K. ;
Pattinson, Kyle T. S. ;
Jenkinson, Mark .
FRONTIERS IN HUMAN NEUROSCIENCE, 2013, 7
[6]   The brain's default network - Anatomy, function, and relevance to disease [J].
Buckner, Randy L. ;
Andrews-Hanna, Jessica R. ;
Schacter, Daniel L. .
YEAR IN COGNITIVE NEUROSCIENCE 2008, 2008, 1124 :1-38
[7]   Abnormal resting-state functional connectivity patterns of the putamen in medication-naive children with attention deficit hyperactivity disorder [J].
Cao, Xiaohua ;
Cao, Qingjiu ;
Long, Xiangyu ;
Sun, Li ;
Sui, Manqiu ;
Zhu, Chaozhe ;
Zuo, Xinian ;
Zang, Yufeng ;
Wang, Yufeng .
BRAIN RESEARCH, 2009, 1303 :195-206
[8]   Automatic 3-D model-based neuroanatomical segmentation [J].
Collins, DL ;
Holmes, CJ ;
Peters, TM ;
Evans, AC .
HUMAN BRAIN MAPPING, 1995, 3 (03) :190-208
[9]  
Cordes D, 2001, AM J NEURORADIOL, V22, P1326
[10]   AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages [J].
Cox, RW .
COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03) :162-173