First-principles study of structural stability, dynamical and mechanical properties of Li2FeSiO4 polymorphs

被引:35
作者
Vajeeston, P. [1 ]
Fjellvag, H. [1 ]
机构
[1] Univ Oslo, Dept Chem, Ctr Mat Sci & Nanotechnol, POB 1033 Blindern, N-0315 Oslo, Norway
关键词
DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; CRYSTAL-STRUCTURE; ELECTROCHEMICAL PERFORMANCE; ELASTIC PROPERTIES; ELECTRONIC-STRUCTURE; POSITIVE-ELECTRODE; LITHIUM INSERTION; CATHODE MATERIALS; 1ST PRINCIPLES;
D O I
10.1039/c6ra26555c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li2FeSiO4 is an important alternative cathode for next generation Li-ion batteries due to its high theoretical capacity (330 mA h g(-1)). However, its development has faced significant challenges arising from structural complexity and poor ionic conductivity. In the present work, the relative stability, electronic structure, thermodynamics, and mechanical properties of potential cathode material Li2FeSiO4 and its polymorphs have been studied by state-of-the-art density-functional calculations. Among the 11 structural arrangements considered for the structural optimization calculations, the experimentally known monoclinic P2(1) modification is found to be the ground state structure. The application of pressure originates a sequence of phase transitions according to P2(1) -> Pmn2(1) -> I222, and the estimated values of the critical pressure are found to be 0.38 and 1.93 GPa. The electronic structures reveal that all the considered polymorphs have a non-metallic character, with band gap values varying between 3.0 and 3.2 eV. The energy differences between different polymorphs are small, and most of these structures are dynamically stable. On the other hand, the calculation of single crystal elastic constants reveals that only few Li2FeSiO4 polymorphs are mechanically stable. At room temperature, the diffusion coefficient calculations of Li2FeSiO4 in different polymorphs reveal that the Li-ion conductivity of this material is poor.
引用
收藏
页码:16843 / 16853
页数:11
相关论文
共 62 条
[1]   Lithium transport investigation in LixFeSiO4: A promising cathode material [J].
Araujo, Rafael B. ;
Scheicher, Ralph H. ;
de Almeida, J. S. ;
Ferreira da Silva, A. ;
Ahuja, Rajeev .
SOLID STATE COMMUNICATIONS, 2013, 173 :9-13
[2]   First-principles investigation of Li ion diffusion in Li2FeSiO4 [J].
Araujo, Rafael B. ;
Scheicher, Ralph H. ;
de Almeida, J. S. ;
Ferreira da Silva, A. ;
Ahuja, Rajeev .
SOLID STATE IONICS, 2013, 247 :8-14
[3]   Structure and Lithium Transport Pathways in Li2FeSiO4 Cathodes for Lithium Batteries [J].
Armstrong, A. Robert ;
Kuganathan, Navaratnarajah ;
Islam, M. Saiful ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (33) :13031-13035
[4]   On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs [J].
Arroyo-deDompablo, M. E. ;
Dominko, R. ;
Gallardo-Amores, J. M. ;
Dupont, L. ;
Mali, G. ;
Ehrenberg, H. ;
Jamnik, J. ;
Moran, E. .
CHEMISTRY OF MATERIALS, 2008, 20 (17) :5574-5584
[5]   Is it possible to prepare olivine-type LiFeSiO4?: A joint computational and experimental investigation [J].
de Dompablo, M. E. Arroyo Y. ;
Gallardo-Amores, J. M. ;
Garcia-Martinez, J. ;
Moran, E. ;
Tarascon, J. -M. ;
Armand, M. .
SOLID STATE IONICS, 2008, 179 (27-32) :1758-1762
[6]   THE ENERGETICS OF FRENKEL DEFECTS IN LI2O FROM 1ST PRINCIPLES [J].
DEVITA, A ;
MANASSIDIS, I ;
LIN, JS ;
GILLAN, MJ .
EUROPHYSICS LETTERS, 1992, 19 (07) :605-610
[7]   Ab initio atomistic simulation of the strength of defective aluminum and tests of empirical force models [J].
Deyirmenjian, VB ;
Heine, V ;
Payne, MC ;
Milman, V ;
LyndenBell, RM ;
Finnis, MW .
PHYSICAL REVIEW B, 1995, 52 (21) :15191-15207
[8]   Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Meden, A ;
Remskar, M ;
Jamnik, J .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (02) :217-222
[9]  
Dudarev SL, 1998, PHYS STATUS SOLIDI A, V166, P429, DOI 10.1002/(SICI)1521-396X(199803)166:1<429::AID-PSSA429>3.0.CO
[10]  
2-F