Strong convergence theorems for uniformly continuous pseudocontractive maps

被引:9
作者
Chidume, C. E. [1 ]
Udomene, A.
机构
[1] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[2] Univ Port Harcourt, Dept Math Stat Comp Sci, Port Harcourt, Nigeria
关键词
uniformly continuous maps; pseudocontractions; f.p.p; Banach spaces; uniformly Gateaux differentiable norm;
D O I
10.1016/j.jmaa.2005.10.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a nonempty closed convex subset of a real Banach space E and let T: K -> K be a uniformly continuous pseudocontraction. Fix any u epsilon K. Let {x(n)} be defined by the iterative process: X-0 epsilon K, x(n+1) := mu(n) (alpha(n)Tx(n) + (1 - alpha(n))alpha(n)) + (1 - mu(n))u. Let delta(epsilon) denote the modulus of continuity of T with pseudo-inverse phi. If {phi(t)/t: 0 < t < 1} and {xn} are bounded then, under some mild conditions on the sequences {alpha(n)}(n), and {mu(n)}(n), the strong convergence of {x(n)} to a fixed point of T is proved. In the special case where T is Lipschitz, it is shown that the boundedness assumptions on {phi(t)/t: 0 < t < I=1} and {x(n)} can be dispensed with. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:88 / 99
页数:12
相关论文
共 19 条
[1]  
[Anonymous], 1990, NONSTANDARD METHODS
[2]   STRONGLY CONVERGENT ITERATIVE SOLUTION OF 0 EPSILON U(X) FOR A MAXIMAL MONOTONE OPERATOR-U IN HILBERT-SPACE [J].
BRUCK, RE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 48 (01) :114-126
[3]   Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps [J].
Chidume, CE ;
Zegeye, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (03) :831-840
[4]   Iterative approximation of fixed points of Lipschitz pseudocontractive maps [J].
Chidume, CE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) :2245-2251
[5]  
CHIDUME CE, IN PRESS J MATH ANAL
[6]  
Cioranescu I., 1990, GEOMETRY BANACH SPAC
[7]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[8]   FIXED-POINTS BY A NEW ITERATION METHOD [J].
ISHIKAWA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) :147-150
[9]   NONLINEAR SEMIGROUPS AND EVOLUTION EQUATIONS [J].
KATO, T .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1967, 19 (04) :508-+
[10]   A FIXED POINT THEOREM FOR MAPPINGS WHICH DO NOT INCREASE DISTANCES [J].
KIRK, WA .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09) :1004-&