A volume decreasing theorem for -harmonic maps and applications

被引:0
作者
Zhao, Guangwen [1 ,2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Volume decreasing; V-harmonic map; Holomorphic map; Almost Hermitian manifold; MANIFOLDS; GEOMETRY; MAPPINGS;
D O I
10.1007/s00013-018-1160-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a volume decreasing result for V-harmonic maps between Riemannian manifolds. We apply this result to obtain corresponding results for Weyl harmonic maps from conformal Weyl manifolds to Riemannian manifolds. We also obtain corresponding results for holomorphic maps from almost Hermitian manifolds to quasi-Kahler manifolds, which generalize or improve the partial results in Goldberg and Har'El (Bull Soc Math GrSce 18(1):141-148, 1977, J Differ Geom 14(1):67-80, 1979).
引用
收藏
页码:629 / 635
页数:7
相关论文
共 10 条
[1]   A SCHWARZ LEMMA FOR V-HARMONIC MAPS AND THEIR APPLICATIONS [J].
Chen, Qun ;
Zhao, Guangwen .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (03) :504-512
[2]   Rigidity of self-shrinkers and translating solitons of mean curvature flows [J].
Chen, Qun ;
Qiu, Hongbing .
ADVANCES IN MATHEMATICS, 2016, 294 :517-531
[3]   A Maximum Principle for Generalizations of Harmonic Maps in Hermitian, Affine, Weyl, and Finsler Geometry [J].
Chen, Qun ;
Jost, Juergen ;
Wang, Guofang .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (04) :2407-2426
[4]   VOLUME DECREASING PROPERTY OF A CLASS OF REAL HARMONIC MAPPINGS [J].
CHERN, S ;
GOLDBERG, SI .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (01) :133-147
[5]  
Goldberg S. I., 1975, GEOMETRIAE DEDICATA, V4, P61
[6]  
Goldberg SamuelI., 1977, Bull. Soc. Math. Grece (N.S.), V18, P141
[7]  
GOLDBERG SI, 1979, J DIFFER GEOM, V14, P67
[8]   HARMONIC MAPPINGS OF NEGATIVELY CURVED MANIFOLDS [J].
HAREL, Z .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (03) :631-637
[9]   On pseudo-harmonic maps in conformal geometry [J].
Kokarev, Gerasim .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 99 :168-194
[10]   GENERAL SCHWARZ LEMMA FOR KAHLER MANIFOLDS [J].
YAU, ST .
AMERICAN JOURNAL OF MATHEMATICS, 1978, 100 (01) :197-203