An Analytic Geometry Approach to Wiener System Frequency Identification

被引:25
作者
Giri, Fouad [1 ]
Rochdi, Youssef [2 ,3 ]
Chaoui, Fatima-Zahra [2 ,3 ]
机构
[1] Univ Caen Basse Normandie, Grp Rech Informat, Image Automat Instrumentat Caen GREYC Lab, F-14032 Caen, France
[2] EMI, LAII, Rabat, Morocco
[3] Ecole Super Enseignement Tech ENSET, Dept Elect Engn, Rabat, Morocco
关键词
Frequency identification; Lissajous curves; nonlinear block-oriented systems; system identification; Wiener systems; NONPARAMETRIC IDENTIFICATION; RECURSIVE-IDENTIFICATION; DOMAIN IDENTIFICATION; NONLINEAR WIENER; MODELS;
D O I
10.1109/TAC.2009.2014915
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the problem of Wiener system identification. The underlying linear subsystem is stable but not necessarily parametric. The nonlinear element in turn is allowed to be nonparametric, noninvertible, and nonsmooth. As Wiener models are uniquely defined up to an uncertain multiplicative factor, it makes sense to start the frequency identification process estimating the system phase (which is common to all models). To this end, a consistent estimator is designed using analytic geometry tools. Accordingly, the system frequency behavior is characterized by a family of Lissajous curves. Interestingly, all these curves are candidates to modelling the system nonlinearity, but the most convenient one is the less spread of them. Finally, the frequency gain is in turn consistently estimated optimizing an appropriate cost function involving the obtained phase and nonlinearity estimates.
引用
收藏
页码:683 / 696
页数:14
相关论文
共 21 条
[1]   Frequency domain identification of Wiener models [J].
Bai, EW .
AUTOMATICA, 2003, 39 (09) :1521-1530
[2]   Linear and non-linear system identification using separable least-squares [J].
Bruls, J ;
Chou, CT ;
Haverkamp, BRJ ;
Verhaegen, M .
EUROPEAN JOURNAL OF CONTROL, 1999, 5 (01) :116-128
[3]  
CARBON M, 1997, MATH ELEMENTS SIGNAL
[4]   Recursive identification for Wiener model with discontinuous piece-wise linear function [J].
Chen, HF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (03) :390-400
[5]  
GARDINER A, 1993, P IFAC S SYST ID EST, P831
[6]   Comment on 'Frequency domain identification of Wiener models', by E.W. Bai, Automatica 39 (2003), 1521-1530 [J].
Giri, F. ;
Rochdi, Y. ;
Chaoui, F. Z. .
AUTOMATICA, 2008, 44 (05) :1451-1455
[8]   NONPARAMETRIC IDENTIFICATION OF WIENER SYSTEMS [J].
GREBLICKI, W .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (05) :1487-1493
[9]   Nonparametric approach to Wiener system identification [J].
Greblicki, W .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (06) :538-545
[10]  
GREBLICKI W, 2001, APPL MATH COMPUTER S, V11, P977