Landau and Kolmogoroff type polynomial inequalities

被引:3
作者
Alves, CRR [1 ]
Dimitrov, DK [1 ]
机构
[1] Univ Estadual Paulista, Dept Ciencias Comp & Estatist, IBILCE, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
关键词
Landau and Kolmogoroff type inequalities; Markov's inequality; hermite polynomials; extremal polynomials; Rayleigh-Ritz theorem;
D O I
10.1155/S1025583499000430
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 0<j<m less than or equal to n be integers. Denote by parallel to . parallel to the norm parallel to f parallel to(2) = integral(-infinity)(infinity) f(2)(x) exp(-x(2)) dx. For various positive values of A and B we establish Kolmogoroff type inequalities parallel to f((f))parallel to(2) less than or equal to A parallel to f(m)parallel to + B parallel to f parallel to/ A theta(k) + B mu(k), with certain constants theta(k)e mu(k), which hold for every f is an element of pi(n) (pi(n) denotes the space of real algebraic polynomials of degree not exceeding n). For the particular case j=1 and m=2, we provide a complete characterisation of the positive constants A and B, for which the corresponding Landau type polynomial inequalities parallel to f'parallel to less than or equal to A parallel to f "parallel to + B parallel to f parallel to/ A theta(k) + B mu(k) hold. In each case we determine the corresponding extremal polynomials for which equalities are attained.
引用
收藏
页码:327 / 338
页数:12
相关论文
共 8 条
[1]   On a polynomial inequality of Kolmogoroff's type [J].
Bojanov, BD ;
Varma, AK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (02) :491-496
[2]  
Horn G. A., 1985, MATRIX ANAL
[3]  
KOLMOGOROFF A, 1962, AM MATH SOC TRANSL 1, P233
[4]  
Landau E., 1913, Proc. London Math. Soc., V13, P43
[5]  
MARKOFF W, 1916, MATH ANN, V77, P213, DOI 10.1007/BF01456902
[6]  
Markov A. A., 1889, ZAP IMP AKAD NAUK, V62, P1
[7]  
SZEGO G, 1975, AM MATH SOC C PUBL, V23
[8]  
VARMA AK, 1990, J APPROX THEORY, V63, P238