Monotonicity Formula and Regularity for General Free Discontinuity Problems

被引:25
作者
Bucur, Dorin [1 ]
Luckhaus, Stephan [2 ]
机构
[1] Univ Savoie, CNRS, UMR 5127, Math Lab, F-73376 Le Bourget Du Lac, France
[2] Univ Leipzig, Fak Math & Informat, Math Inst, D-04009 Leipzig, Germany
关键词
MINIMUM PROBLEM; EXISTENCE;
D O I
10.1007/s00205-013-0671-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a general monotonicity formula for local minimizers of free discontinuity problems which have a critical deviation from minimality, of order d - 1. This result allows us to prove partial regularity results (that is closure and density estimates for the jump set) for a large class of free discontinuity problems involving general energies associated to the jump set, as for example free boundary problems with Robin conditions. In particular, we give a short proof to the De Giorgi-Carriero-Leaci result for the Mumford-Shah functional.
引用
收藏
页码:489 / 511
页数:23
相关论文
共 5 条
[1]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P105
[2]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[3]   A Variational Approach to the Isoperimetric Inequality for the Robin Eigenvalue Problem [J].
Bucur, Dorin ;
Giacomini, Alessandro .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (03) :927-961
[4]   A VARIATIONAL METHOD IN IMAGE SEGMENTATION - EXISTENCE AND APPROXIMATION RESULTS [J].
DALMASO, G ;
MOREL, JM ;
SOLIMINI, S .
ACTA MATHEMATICA, 1992, 168 (1-2) :89-151
[5]   EXISTENCE THEOREM FOR A MINIMUM PROBLEM WITH FREE DISCONTINUITY SET [J].
DEGIORGI, E ;
CARRIERO, M ;
LEACI, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (03) :195-218