From the fitting techniques to accurate schemes for the Liouville-Bratu-Gelfand problem

被引:44
作者
Serghini Mounim, A. [1 ]
de Dormale, B. M. [1 ]
机构
[1] Univ Moncton, Dept Math & Stat, Moncton, NB E1A 3E9, Canada
关键词
fitted method; nonstandard finite difference; Liouville-Bratu-Gelfand problem;
D O I
10.1002/num.20116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in numerical methods for the Liouville-Bratu-Gelfand problem. The ideas and techniques developed here to construct the schemes are inspired from the fitted method and the so-called compact exponentially fitted method. Some of those schemes can be viewed as extensions of both the Buckmire scheme and the standard scheme which results from the use of the standard finite-difference procedures. We study and compare computationally the accuracy of methods introduced here. It is also mentioned that the Buckmire's techniques and the standard scheme are a particular case of the fitted method. (C) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:761 / 775
页数:15
相关论文
共 23 条
[1]  
BERGER AE, 1980, MATH COMPUT, V35, P695, DOI 10.1090/S0025-5718-1980-0572850-8
[2]  
Bratu G., 1914, B SOC MATH FRANCE, V42, P113
[3]   TWO-DIMENSIONAL EXPONENTIAL FITTING AND APPLICATIONS TO DRIFT-DIFFUSION MODELS [J].
BREZZI, F ;
MARINI, LD ;
PIETRA, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1342-1355
[4]   Application of a Mickens finite-difference scheme to the cylindrical Bratu-Gelfand problem [J].
Buckmire, R .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (03) :327-337
[5]  
de G Allen DN., 1955, QUART J MECH APPL MA, V8, P129, DOI [10.1093/qjmam/8.2.129, DOI 10.1093/QJMAM/8.2.129, 10.1093/qjmam/8.2.129.]
[6]  
DEDORMALE BM, UNPUB NUMER APPL MAT
[7]  
DENNIS S. C. R., 1960, Q J MECH APPL MATH, VXIII, P487
[8]  
DENNIS SCR, 1979, J I MATH APPL, V23, P43
[9]   CONSTRUCTION OF FINITE-DIFFERENCE APPROXIMATIONS TO ORDINARY DIFFERENTIAL-EQUATIONS [J].
DOEDEL, EJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (03) :450-465
[10]  
GARTLAND EC, 1987, MATH COMPUT, V48, P551, DOI 10.1090/S0025-5718-1987-0878690-0