Isometries between finite groups

被引:2
作者
Podesta, Ricardo A. [1 ]
Vides, Maximiliano G. [1 ,2 ]
机构
[1] Univ Nacl Cordoba, CONICET, FaMAF CIEM, Av Medina Allende 2144,Ciudad Univ, RA-5000 Cordoba, Argentina
[2] Univ Nacl Litoral, Fac Ingn Quim, Dept Matemat, Santiago Estero 2829, RA-3000 Santa Fe, Argentina
关键词
Isometry; Metric spaces; Finite groups; Generalized Gray maps; Isometric embedding; Chain metrics;
D O I
10.1016/j.disc.2020.112070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if H is a subgroup of index n of any cyclic group G then G can be isometrically embedded in (H-n, d(Ham)(n)), thus generalizing previous results of Carlet (1998) for G = Z(2k) and Yildiz and odemis ozger (2012) for G = Z(pk) with p prime. Next, for any positive integer q we define the q-adic metric d(q) in Z(qn) and prove that (Z(qn), d(q)) is isometric to (Z(q)(n), d(RT)) for every n, where d(RT) is the Rosenbloom-Tsfasman metric. More generally, we then demonstrate that any pair of finite groups of the same cardinality are isometric to each other for some metrics that can be explicitly constructed. Finally, we consider a chain C of subgroups of a given group and define the chain metric dC and chain isometries between two chains. Let G, K be groups with vertical bar G vertical bar = qn, vertical bar K vertical bar = q and let H < G. Using chains, we prove that under certain conditions, (G, d(C)) similar or equal to (K-n, d(RT)) and (G, d(C)) similar or equal to (H-[G:H], d(BRT)) where d(BRT) is the block Rosenbloom-Tsfasman metric which generalizes d(RT). (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] On extensions of subshifts by finite groups
    Matsumoto, Kengo
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2017, 32 (03): : 423 - 459
  • [42] Membership problems in finite groups
    Lohrey, Markus
    Rosowski, Andreas
    Zetzsche, Georg
    JOURNAL OF ALGEBRA, 2025, 675 : 23 - 58
  • [43] Harmonic numbers and finite groups
    Baishya, Sekhar Jyoti
    Das, Ashish Kumar
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2014, 132 : 33 - 43
  • [44] On Brauer invariants of finite groups
    Gille, Stefan
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (01) : 217 - 234
  • [45] Bounding Ext for modules for algebraic groups, finite groups and quantum groups
    Parshall, Brian J.
    Scott, Leonard L.
    ADVANCES IN MATHEMATICS, 2011, 226 (03) : 2065 - 2088
  • [46] A restriction on centralizers in finite groups
    Fernandez-Alcober, Gustavo A.
    Legarreta, Leire
    Tortora, Antonio
    Tota, Maria
    JOURNAL OF ALGEBRA, 2014, 400 : 33 - 42
  • [47] Special Blocks of Finite Groups
    Ji Ping ZHANG
    Acta Mathematica Sinica,English Series, 2016, (01) : 115 - 123
  • [48] On Subpermuteral Subgroups in Finite Groups
    Monakhov, Victor
    Sokhor, Irina
    RESULTS IN MATHEMATICS, 2022, 77 (05)
  • [49] A characterization of solubility of finite groups
    Li, Jinbao
    Yu, Dapeng
    MONATSHEFTE FUR MATHEMATIK, 2019, 189 (04): : 691 - 694
  • [50] Cellular automata and finite groups
    Castillo-Ramirez, Alonso
    Gadouleau, Maximilien
    NATURAL COMPUTING, 2019, 18 (03) : 445 - 458