Isometries between finite groups

被引:2
作者
Podesta, Ricardo A. [1 ]
Vides, Maximiliano G. [1 ,2 ]
机构
[1] Univ Nacl Cordoba, CONICET, FaMAF CIEM, Av Medina Allende 2144,Ciudad Univ, RA-5000 Cordoba, Argentina
[2] Univ Nacl Litoral, Fac Ingn Quim, Dept Matemat, Santiago Estero 2829, RA-3000 Santa Fe, Argentina
关键词
Isometry; Metric spaces; Finite groups; Generalized Gray maps; Isometric embedding; Chain metrics;
D O I
10.1016/j.disc.2020.112070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if H is a subgroup of index n of any cyclic group G then G can be isometrically embedded in (H-n, d(Ham)(n)), thus generalizing previous results of Carlet (1998) for G = Z(2k) and Yildiz and odemis ozger (2012) for G = Z(pk) with p prime. Next, for any positive integer q we define the q-adic metric d(q) in Z(qn) and prove that (Z(qn), d(q)) is isometric to (Z(q)(n), d(RT)) for every n, where d(RT) is the Rosenbloom-Tsfasman metric. More generally, we then demonstrate that any pair of finite groups of the same cardinality are isometric to each other for some metrics that can be explicitly constructed. Finally, we consider a chain C of subgroups of a given group and define the chain metric dC and chain isometries between two chains. Let G, K be groups with vertical bar G vertical bar = qn, vertical bar K vertical bar = q and let H < G. Using chains, we prove that under certain conditions, (G, d(C)) similar or equal to (K-n, d(RT)) and (G, d(C)) similar or equal to (H-[G:H], d(BRT)) where d(BRT) is the block Rosenbloom-Tsfasman metric which generalizes d(RT). (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Surjective isometries between unitary sets of unital JB*-algebras
    Cueto-Avellaneda, Maria
    Enami, Yuta
    Hirota, Daisuke
    Miura, Takeshi
    Peralta, Antonio M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 643 : 39 - 79
  • [32] FINITE GROUPS ADMITTING SOME COPRIME OPERATOR GROUPS
    Jabara, Enrico
    MATEMATICKI VESNIK, 2006, 58 (1-2): : 31 - 37
  • [33] Special Blocks of Finite Groups
    Zhang, Ji Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (01) : 115 - 123
  • [34] On Subpermuteral Subgroups in Finite Groups
    Victor Monakhov
    Irina Sokhor
    Results in Mathematics, 2022, 77
  • [35] FINITE TRIFACTORISED GROUPS AND π-DECOMPOSABILITY
    Kazarin, L. S.
    Martinez-Pastor, A.
    Perez-Ramos, M. D.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 97 (02) : 218 - 228
  • [36] On the length of finite factorized groups
    Khukhro, E. I.
    Shumyatsky, P.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (06) : 1775 - 1780
  • [37] Coprime commutators in finite groups
    Bastos, Raimundo
    Monetta, Carmine
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) : 4137 - 4147
  • [38] On Brauer invariants of finite groups
    Stefan Gille
    Mathematische Zeitschrift, 2022, 300 : 217 - 234
  • [39] Moonshine for all finite groups
    Samuel DeHority
    Xavier Gonzalez
    Neekon Vafa
    Roger Van Peski
    Research in the Mathematical Sciences, 2018, 5
  • [40] On the length of finite factorized groups
    E. I. Khukhro
    P. Shumyatsky
    Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 1775 - 1780