Totally geodesic submanifolds of a trans-Sasakian manifold

被引:6
|
作者
De, Avik [1 ]
机构
[1] Univ Malaya, Inst Math Sci, Kuala Lumpur 50603, Malaysia
关键词
invariant submanifold; trans-Sasakian manifold; totally geodesic; semi-parallel; recurrent; pseudo-parallel; Ricci generalized pseudo-parallel; INVARIANT SUBMANIFOLDS;
D O I
10.3176/proc.2013.4.05
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider invariant submanifolds of a trans-Sasakian manifold and obtain the conditions under which the submanifolds are totally geodesic. We also study invariant submanifolds of a trans-Sasakian manifold satisfying Z(X;Y).h = 0, where Z is the concircular curvature tensor.
引用
收藏
页码:249 / 257
页数:9
相关论文
共 50 条
  • [31] On some special type of trans-Sasakian manifolds
    Prasad, Rajendra
    Pankaj
    Tripathi, M. M.
    Shukla, S. S.
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2009, 2 : 1 - 17
  • [32] Transversal hypersurfaces with (f, g, u, v, lambda)-structure of a nearly trans-Sasakian manifold
    Prasad, Rajendra
    Yadav, Satya Prakash
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2016, 7 (02) : 115 - 121
  • [33] CHARACTERIZATIONS FOR TOTALLY GEODESIC SUBMANIFOLDS OF (κ, μ)-PARACONTACT METRIC MANIFOLDS
    Atceken, Mehmet
    Uygun, Pakize
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (03): : 555 - 571
  • [34] Some results on K - contact and Trans-Sasakian Manifolds
    Channabasappa, Bagewadi
    Basavarajappa, N. S.
    Prakasha, D. G.
    Venkatesha
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2008, 1 (02): : 21 - 31
  • [35] NULLITY CONDITION ON TRANS-SASAKIAN 3-MANIFOLDS
    Wang, Wenjie
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2022, 75 (10): : 1410 - 1418
  • [36] On a class of three-dimensional trans-Sasakian manifolds
    De, Uday Chand
    De, Krishnendu
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (04): : 795 - 808
  • [37] ON D-HOMOTHETIC DEFORMATION OF TRANS-SASAKIAN STRUCTURE
    Shaikh, A. A.
    Baishya, K. K.
    Eyasmin, S.
    DEMONSTRATIO MATHEMATICA, 2008, 41 (01) : 171 - 188
  • [38] A classification of totally geodesic and totally umbilical Legendrian submanifolds of (κ, μ)-spaces
    Carriazo, Alfonso
    Martin-Molina, Veronica
    Vrancken, Luc
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (02) : 173 - 185
  • [39] On trans-Sasakian 3-manifolds as η-Einstein solitons
    Ganguly, D.
    Dey, S.
    Bhattacharyya, A.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2021, 13 (02) : 460 - 474
  • [40] EINSTEIN-WEYL STRUCTURES ON TRANS-SASAKIAN MANIFOLDS
    Chen, Xiaomin
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1425 - 1436