Crim1 regulates integrin signaling in murine lens development

被引:31
作者
Zhang, Ying [1 ,2 ]
Fan, Jieqing [3 ]
Ho, Joshua W. K. [1 ,2 ,4 ,5 ,6 ]
Hu, Tommy [1 ,2 ]
Kneeland, Stephen C. [7 ,8 ]
Fan, Xueping [9 ]
Xi, Qiongchao [1 ,2 ]
Sellarole, Michael A. [5 ,6 ]
de Vries, Wilhelmine N. [5 ,6 ]
Lu, Weining [9 ]
Lachke, Salil A. [1 ,2 ,10 ]
Lang, Richard A. [3 ]
John, Simon W. M. [5 ,6 ]
Maas, Richard L. [1 ,2 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Genet, 75 Francis St, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Boston, MA 02115 USA
[3] Cincinnati Childrens Hosp Med Ctr, Dept Dev Biol, Cincinnati, OH 45229 USA
[4] Harvard Univ, Sch Med, Ctr Biomed Informat, Boston, MA 02115 USA
[5] Victor Chang Cardiac Res Inst, Sydney, NSW 2010, Australia
[6] Univ New S Wales, Sydney, NSW 2010, Australia
[7] Howard Hughes Med Inst, 600 Main St, Bar Harbor, ME 04609 USA
[8] Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA
[9] Boston Univ, Med Ctr, Dept Med, Renal Sect, Boston, MA 02118 USA
[10] Univ Delaware, Dept Biol Sci, Newark, DE 19716 USA
来源
DEVELOPMENT | 2016年 / 143卷 / 02期
基金
美国国家卫生研究院;
关键词
Cataract; Cell adhesion; Cysteine-rich transmembrane BMP regulator 1; Crim1; Eye development; Integrin; Lens; Mouse; BETA-1-INTEGRIN; EXPRESSION; DELETION; GROWTH; LEADS;
D O I
10.1242/dev.125591
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The developing lens is a powerful system for investigating the molecular basis of inductive tissue interactions and for studying cataract, the leading cause of blindness. The formation of tightly controlled cell-cell adhesions and cell-matrix junctions between lens epithelial (LE) cells, between lens fiber (LF) cells, and between these two cell populations enables the vertebrate lens to adopt a highly ordered structure and acquire optical transparency. Adhesion molecules are thought to maintain this ordered structure, but little is known about their identity or interactions. Cysteine-rich motor neuron 1 (Crim1), a type I transmembrane protein, is strongly expressed in the developing lens and its mutation causes ocular disease in both mice and humans. How Crim1 regulates lens morphogenesis is not understood. We identified a novel ENU-induced hypomorphic allele of Crim1, Crim1(glcr11), which in the homozygous state causes cataract and microphthalmia. Using this and two other mutant alleles, Crim1(null) and Crim1(cko), we show that the lens defects in Crim1 mouse mutants originate from defective LE cell polarity, proliferation and cell adhesion. Crim1 adhesive function is likely to be required for interactions both between LE cells and between LE and LF cells. We show that Crim1 acts in LE cells, where it colocalizes with and regulates the levels of active beta 1 integrin and of phosphorylated FAK and ERK. The RGD and transmembrane motifs of Crim1 are required for regulating FAK phosphorylation. These results identify an important function for Crim1 in the regulation of integrin- and FAK-mediated LE cell adhesion during lens development.
引用
收藏
页码:356 / 366
页数:11
相关论文
共 40 条
[11]  
2-I
[12]   CRIM1 is involved in endothelial cell capillary formation in vitro and is expressed in blood vessels in vivo [J].
Glienke, J ;
Sturz, A ;
Menrad, A ;
Thierauch, KH .
MECHANISMS OF DEVELOPMENT, 2002, 119 (02) :165-175
[13]   Congenital cataracts and their molecular genetics [J].
Hejtmancik, J. Fielding .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2008, 19 (02) :134-149
[14]   INTEGRINS - VERSATILITY, MODULATION, AND SIGNALING IN CELL-ADHESION [J].
HYNES, RO .
CELL, 1992, 69 (01) :11-25
[15]   Mouse genomic variation and its effect on phenotypes and gene regulation [J].
Keane, Thomas M. ;
Goodstadt, Leo ;
Danecek, Petr ;
White, Michael A. ;
Wong, Kim ;
Yalcin, Binnaz ;
Heger, Andreas ;
Agam, Avigail ;
Slater, Guy ;
Goodson, Martin ;
Furlotte, Nicholas A. ;
Eskin, Eleazar ;
Nellaker, Christoffer ;
Whitley, Helen ;
Cleak, James ;
Janowitz, Deborah ;
Hernandez-Pliego, Polinka ;
Edwards, Andrew ;
Belgard, T. Grant ;
Oliver, Peter L. ;
McIntyre, Rebecca E. ;
Bhomra, Amarjit ;
Nicod, Jerome ;
Gan, Xiangchao ;
Yuan, Wei ;
van der Weyden, Louise ;
Steward, Charles A. ;
Bala, Sendu ;
Stalker, Jim ;
Mott, Richard ;
Durbin, Richard ;
Jackson, Ian J. ;
Czechanski, Anne ;
Guerra-Assuncao, Jose Afonso ;
Donahue, Leah Rae ;
Reinholdt, Laura G. ;
Payseur, Bret A. ;
Ponting, Chris P. ;
Birney, Ewan ;
Flint, Jonathan ;
Adams, David J. .
NATURE, 2011, 477 (7364) :289-294
[16]   CRIM1, a novel gene encoding a cysteine-rich repeat protein, is developmentally regulated and implicated in vertebrate CNS development and organogenesis [J].
Kolle, G ;
Georgas, K ;
Holmes, GP ;
Little, MH ;
Yamada, T .
MECHANISMS OF DEVELOPMENT, 2000, 90 (02) :181-193
[17]  
Kreidberg JA, 1996, DEVELOPMENT, V122, P3537
[18]   iSyTE: Integrated Systems Tool for Eye Gene Discovery [J].
Lachke, Salil A. ;
Ho, Joshua W. K. ;
Kryukov, Gregory V. ;
O'Connell, Daniel J. ;
Aboukhalil, Anton ;
Bulyk, Martha L. ;
Park, Peter J. ;
Maas, Richard L. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (03) :1617-1627
[19]   Genetic and cell biological analysis of integrin outside-in signaling [J].
Legate, Kyle R. ;
Wickstroem, Sara A. ;
Faessler, Reinhard .
GENES & DEVELOPMENT, 2009, 23 (04) :397-418
[20]   Expression of Crim1 during murine ocular development [J].
Lovicu, FJ ;
Kolle, G ;
Yamada, T ;
Little, MH ;
McAvoy, JW .
MECHANISMS OF DEVELOPMENT, 2000, 94 (1-2) :261-265