Distributed stabilization control of rigid formations with prescribed orientation

被引:63
作者
Sun, Zhiyong [2 ,3 ]
Park, Myoung-Chul [4 ]
Anderson, Brian D. O. [1 ,2 ,3 ]
Ahn, Hyo-Sung [4 ]
机构
[1] Hangzhou Dianzi Univ, Sch Automat, Hangzhou 310018, Zhejiang, Peoples R China
[2] Australian Natl Univ, CSIRO, Data61, Canberra, ACT 2601, Australia
[3] Australian Natl Univ, Res Sch Engn, Canberra, ACT 2601, Australia
[4] Gwangju Inst Sci & Technol, Sch Mech Engn, Gwangju, South Korea
基金
新加坡国家研究基金会; 澳大利亚研究理事会;
关键词
Formation control; Formation orientation; Coordinate system; Rigidity theory;
D O I
10.1016/j.automatica.2016.12.031
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most rigid formation controllers reported in the literature aim to only stabilize a rigid formation shape, while the formation orientation is not controlled. This paper studies the problem of controlling rigid formations with prescribed orientations in both 2-D and 3-D spaces. The proposed controllers involve the commonly-used gradient descent control for shape stabilization, and an additional term to control the directions of certain relative position vectors associated with certain chosen agents. In this control framework, we show the minimal number of agents which should have knowledge of a global coordinate system (2 agents for a 2-D rigid formation and 3 agents for a 3-D rigid formation), while all other agents do not require any global coordinate knowledge or any coordinate frame alignment to implement the proposed control. The exponential convergence to the desired rigid shape and formation orientation is also proved. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:250 / 257
页数:8
相关论文
共 32 条
[1]   On the stable equilibrium points of gradient systems [J].
Absil, P-A. ;
Kurdyka, K. .
SYSTEMS & CONTROL LETTERS, 2006, 55 (07) :573-577
[2]   COUNTING CRITICAL FORMATIONS ON A LINE [J].
Anderson, Brian D. O. ;
Helmke, Uwe .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) :219-242
[3]  
[Anonymous], 1996, NONLINEAR SYSTEM
[4]   Coordinate-free formation stabilization based on relative position measurements [J].
Aranda, Miguel ;
Lopez-Nicolas, Gonzalo ;
Saguees, Carlos ;
Zavlanos, Michael M. .
AUTOMATICA, 2015, 57 :11-20
[5]   RIGIDITY OF GRAPHS .2. [J].
ASIMOW, L ;
ROTH, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 68 (01) :171-190
[6]   Adaptive Rigidity-Based Formation Control for Multirobotic Vehicles With Dynamics [J].
Cai, Xiaoyu ;
de Queiroz, Marcio .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2015, 23 (01) :389-396
[7]  
Cao M, 2011, COMMUN INF SYST, V11, P1
[8]   Global and robust formation-shape stabilization of relative sensing networks [J].
Cortes, Jorge .
AUTOMATICA, 2009, 45 (12) :2754-2762
[9]   Distributed Rotational and Translational Maneuvering of Rigid Formations and Their Applications [J].
de Marina, Hector Garcia ;
Jayawardhana, Bayu ;
Cao, Ming .
IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (03) :684-697
[10]   Geometric Analysis of the Formation Problem for Autonomous Robots [J].
Doerfler, Florian ;
Francis, Bruce .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (10) :2379-2384