Discrete nonlinear Schrodinger equations free of the Peierls-Nabarro potential

被引:23
作者
Dmitriev, S. V.
Kevrekidis, P. G.
Sukhorukov, A. A.
Yoshikawa, N.
Takeno, S.
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[3] Australian Natl Univ, Nonlinear Phys Ctr, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia
[4] Nagasaki Inst Appl Sci, Grad Sch, Nagasaki 8510193, Japan
关键词
D O I
10.1016/j.physleta.2006.03.056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a class of discrete nonlinear Schrodinger (DNLS) equations for general polynomial nonlinearity whose stationary solutions can be found from a reduced two-point algebraic problem. It is demonstrated that the derived class of discretizations contains subclasses conserving classical norm or a modified norm and classical momentum. These equations are interesting from the physical standpoint since they support stationary discrete solitons free of the Peierls-Nabarro potential. Focusing on the cubic nonlinearity we then consider a small perturbation around stationary soliton solutions and, solving corresponding eigenvalue problem, we (i) demonstrate that solitons are stable; (ii) show that they have two additional zero-frequency modes responsible for their effective translational invariance; (iii) derive semi-analytical solutions for discrete solitons moving at slow speed. To highlight the unusual properties of solitons in the new discrete models we compare them with that of the classical DNLS equation giving several numerical examples. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:324 / 332
页数:9
相关论文
共 35 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[2]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[3]   Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays [J].
Aceves, AB ;
DeAngelis, C ;
Peschel, T ;
Muschall, R ;
Lederer, F ;
Trillo, S ;
Wabnitz, S .
PHYSICAL REVIEW E, 1996, 53 (01) :1172-1189
[4]   Exploiting discreteness for switching in waveguide arrays [J].
Bang, O ;
Miller, PD .
OPTICS LETTERS, 1996, 21 (15) :1105-1107
[5]   Translationally invariant discrete kinks from one-dimensional maps [J].
Barashenkov, IV ;
Oxtoby, OF ;
Pelinovsky, DE .
PHYSICAL REVIEW E, 2005, 72 (03)
[6]   STABILITY OF STATIONARY SOLUTIONS OF THE DISCRETE SELF-TRAPPING EQUATION [J].
CARR, J ;
EILBECK, JC .
PHYSICS LETTERS A, 1985, 109 (05) :201-204
[7]   Discretizing light behaviour in linear and nonlinear waveguide lattices [J].
Christodoulides, DN ;
Lederer, F ;
Silberberg, Y .
NATURE, 2003, 424 (6950) :817-823
[8]   DISCRETE SELF-FOCUSING IN NONLINEAR ARRAYS OF COUPLED WAVE-GUIDES [J].
CHRISTODOULIDES, DN ;
JOSEPH, RI .
OPTICS LETTERS, 1988, 13 (09) :794-796
[9]   Exact solitary wave solutions for a discrete λφ4 field theory in 1+1 dimensions -: art. no. 036605 [J].
Cooper, F ;
Khare, A ;
Mihaila, B ;
Saxena, A .
PHYSICAL REVIEW E, 2005, 72 (03)
[10]   Discrete Klein-Gordon models with static kinks free of the Peierls-Nabarro potential [J].
Dmitriev, SV ;
Kevrekidis, PG ;
Yoshikawal, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (35) :7617-7627