The method of fundamental solutions for inverse obstacle acoustic scattering

被引:1
作者
Karageorghis, A. [1 ]
Lesnic, D. [2 ]
机构
[1] Univ Nicosia, Dept Math & Stat, Nicosia, Cyprus
[2] Univ Leeds, Dept Appl Math, Leeds, W Yorkshire, England
来源
BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXXII, BEM/MRM 2010 | 2010年
关键词
inverse acoustic scattering; method of fundamental solutions; UNIQUENESS;
D O I
10.2495/BE100171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a simple method for detecting (shape, size and location) a scatterer embedded in a host acoustic homogeneous medium from scant measurements of the scattered acoustic pressure in the vicinity (near-or far-field) of the obstacle. We develop a nonlinear constrained minimization regularized method of fundamental solutions for obtaining the numerical solution of the inverse problem. The stability of the numerical scheme is investigated by inverting measurements contaminated with noise.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 16 条
[1]  
Bogomolny A, 1985, J NUMER ANAL, V22, P644
[2]   UNIQUENESS THEOREMS FOR THE INVERSE PROBLEM OF ACOUSTIC SCATTERING [J].
COLTON, D ;
SLEEMAN, BD .
IMA JOURNAL OF APPLIED MATHEMATICS, 1983, 31 (03) :253-259
[3]   Recent developments in inverse acoustic scattering theory [J].
Colton, D ;
Coyle, J ;
Monk, P .
SIAM REVIEW, 2000, 42 (03) :369-414
[4]  
Colton D., 1998, APPL MATH SCI
[5]   The method of fundamental solutions for scattering and radiation problems [J].
Fairweather, G ;
Karageorghis, A ;
Martin, PA .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2003, 27 (07) :759-769
[6]  
Garbow B.S., 1980, MINPACK PROJECT
[7]  
Johansson T, 2007, IMA J APPL MATH, V72, P96, DOI [10.1093/imamat/hx1026, 10.1093/imamat/hxl026]
[8]   Detection of cavities using the method of fundamental solutions [J].
Karageorghis, A. ;
Lesnic, D. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2009, 17 (06) :803-820
[9]   UNIQUENESS IN INVERSE OBSTACLE SCATTERING [J].
KIRSCH, A ;
KRESS, R .
INVERSE PROBLEMS, 1993, 9 (02) :285-299
[10]  
Kirsch A., 1996, APPL MATH SCI, DOI [10.1007/978-1-4612-5338-9, DOI 10.1007/978-1-4612-5338-9]