Origin of Catalytic Effect in the Reduction of CO2 at Nanostructured TiO2 Films

被引:117
作者
Ramesha, Ganganahalli K. [1 ]
Brennecke, Joan F. [2 ]
Kamat, Prashant V. [1 ,2 ,3 ]
机构
[1] Univ Notre Dame, Radiat Lab, South Bend, IN 46556 USA
[2] Univ Notre Dame, Dept Chem & Biomol Engn, South Bend, IN 46556 USA
[3] Univ Notre Dame, Dept Chem & Biochem, South Bend, IN 46556 USA
关键词
CO2; reduction; TiO2; electrocatalysis; electrochemical reduction; Faradaic efficiency; spectroelectrochemistry; methanol; Ti-3+ states; C-1 fuel formation; CARBON-DIOXIDE; PHOTOCATALYTIC REDUCTION; ELECTROCHEMICAL REDUCTION; ELECTRON-TRANSFER; ACTIVE-SITES; TITANIUM; H2O; ELECTROREDUCTION; SELECTIVITY; CONVERSION;
D O I
10.1021/cs500730w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalytic activity of nanostructured TiO2 films toward the reduction of CO, is probed by depositing a nanostructured film on a glassy carbon electrode. The one-electron reduction of CO, in acetonitrile seen at an onset potential of -0.95 V (vs NHE) is significantly lower than the one observed with a glassy carbon electrode. The electrocatalytic role of TiO2 is elucidated through spectroelectrochemistry and product analysis. Ti species formed when the TiO2 film is subjected to negative potentials have been identified as active reduction sites. Binding of CO, to catalytically active Ti-3+ followed by the electron transfer facilitates the initial one-electron reduction process. Methanol was the primary product when the reduction was carried out in wet
引用
收藏
页码:3249 / 3254
页数:6
相关论文
共 46 条
[31]   Selectivity of CO2 Reduction on Copper Electrodes: The Role of the Kinetics of Elementary Steps [J].
Nie, Xiaowa ;
Esopi, Monica R. ;
Janik, Michael J. ;
Asthagiri, Aravind .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (09) :2459-2462
[32]   Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C [J].
Pavlishchuk, VV ;
Addison, AW .
INORGANICA CHIMICA ACTA, 2000, 298 (01) :97-102
[33]   Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts [J].
Peterson, Andrew A. ;
Norskov, Jens K. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (02) :251-258
[34]   A Density Functional Theory and Experimental Study of CO2 Interaction with Brookite TiO2 [J].
Rodriguez, Monique M. ;
Peng, Xihong ;
Liu, Lianjun ;
Li, Ying ;
Andino, Jean M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (37) :19755-19764
[35]   Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts [J].
Schneider, Jacob ;
Jia, Hongfei ;
Muckerman, James T. ;
Fujita, Etsuko .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2036-2051
[36]   Titanium and Zinc Oxide Nanoparticles Are Proton-Coupled Electron Transfer Agents [J].
Schrauben, Joel N. ;
Hayoun, Rebecca ;
Valdez, Carolyn N. ;
Braten, Miles ;
Fridley, Lila ;
Mayer, James M. .
SCIENCE, 2012, 336 (6086) :1298-1301
[37]   Fuel Cell Geared in Reverse: Photocatalytic Hydrogen Production Using a TiO2/Nafion/Pt Membrane Assembly with No Applied Bias [J].
Seger, Brian ;
Kamat, Prashant V. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (43) :18946-18952
[38]   Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method [J].
Slamet ;
Nasution, HW ;
Purnama, E ;
Kosela, S ;
Gunlazuardi, J .
CATALYSIS COMMUNICATIONS, 2005, 6 (05) :313-319
[39]   Switching the Reaction Course of Electrochemical CO2 Reduction with Ionic Liquids [J].
Sun, Liyuan ;
Ramesha, Ganganahalli K. ;
Kamat, Prashant V. ;
Brennecke, Joan F. .
LANGMUIR, 2014, 30 (21) :6302-6308
[40]   Capture, Store, and Discharge. Shuttling Photogenerated Electrons across TiO2-Silver Interface [J].
Takai, Azusa ;
Kamat, Prashant V. .
ACS NANO, 2011, 5 (09) :7369-7376