A Prediction Model of Hard landing Based on RBF Neural Network with K-means Clustering Algorithm

被引:0
|
作者
Qiao, Xiaoduo [1 ]
Chang, Wenbing [1 ]
Zhou, Shenghan [1 ]
Lu, Xuefeng [1 ]
机构
[1] Beihang Univ, Sch Reliabil & Syst Engn, Beijing, Peoples R China
来源
2016 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM) | 2016年
基金
中国国家自然科学基金;
关键词
flight data; hard landing; prediction model; RBF neural network; K-means clustering algorithm;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a prediction model for forecasting the hard landing problem. The landing phase has been demonstrated the most dangerous phase in flight cycle for fatal accidents. The landing safety problem has become one of the hot research problems in engineering management field. The study concentrates more on the prediction and advanced warning of hard landing. Firstly, flight data is preprocessed with data slicing method based on flight height and dimension reduction. Subsequently, the radial basis function (RBF) neural network model is established to predict the hard landing. Then, the structure parameters of the model are determined by the K-means clustering algorithm. In the end, compared with Support Vector Machine and BP neural network, the RBF neural network based on K-means clustering algorithm model is adopted and the prediction accuracy of hard landing is better than traditional ways.
引用
收藏
页码:462 / 465
页数:4
相关论文
共 50 条
  • [21] A Credit Rating Model for Enterprises Based on Kernel Density Estimation and K-means Clustering Algorithm
    Zhang Mu
    Zhou Zong-fang
    EBM 2010: INTERNATIONAL CONFERENCE ON ENGINEERING AND BUSINESS MANAGEMENT, VOLS 1-8, 2010, : 3855 - 3860
  • [22] The new k-windows algorithm for improving the k-means clustering algorithm
    Vrahatis, MN
    Boutsinas, B
    Alevizos, P
    Pavlides, G
    JOURNAL OF COMPLEXITY, 2002, 18 (01) : 375 - 391
  • [23] Study on Network Flow Prediction Model Based on Particle Swarm Optimization Algorithm and RBF Neural Network
    Bin, Zhang Yu
    Zhong, Lin Li
    Ming, Zhang Ya
    ICCSIT 2010 - 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 2, 2010, : 302 - 306
  • [24] Comparison and Detection Analysis of Network Traffic Datasets Using K-Means Clustering Algorithm
    Al-Sanjary, Omar Ismael
    Bin Roslan, Muhammad Aiman
    Helmi, Rabab Alayham Abbas
    Ahmed, Ahmed Abdullah
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2020, 19 (03)
  • [25] Channeling analysis of wavelet threshold processing based on K-means clustering algorithm
    Gan, Lixiong
    Li, Ming
    Cai, Wenyuan
    Li, Jian
    Chen, Zhanglong
    Sun, Jian
    Deng, Rui
    ACTA GEOPHYSICA, 2023, 71 (05) : 2137 - 2147
  • [26] A Semi-Supervised Text Clustering Approach Based on K-Means Algorithm
    Zhan, Lizhang
    Xu, Hong
    Chen, Xiuguo
    INTERNATIONAL CONFERENCE ON ENGINEERING AND BUSINESS MANAGEMENT (EBM2011), VOLS 1-6, 2011, : 2616 - 2620
  • [27] Digital Visual Design Reengineering and Application Based on K-means Clustering Algorithm
    Ren, Lijie
    Kim, Hyunsuk
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2024, 11 (04):
  • [28] Zoning of reservoir water temperature field based on K-means clustering algorithm
    Liu, Wei
    Zou, Peng
    Jiang, Dingguo
    Quan, Xiufeng
    Dai, Huichao
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2022, 44
  • [29] K-means Clustering Based on Improved Quantum Particle Swarm Optimization Algorithm
    Bai, Lili
    Song, Zerui
    Bao, Haijie
    Jiang, Jingqing
    2021 13TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2021, : 140 - 145
  • [30] Channeling analysis of wavelet threshold processing based on K-means clustering algorithm
    Lixiong Gan
    Ming Li
    Wenyuan Cai
    Jian Li
    Zhanglong Chen
    Jian Sun
    Rui Deng
    Acta Geophysica, 2023, 71 : 2137 - 2147