Recognition of Assembly Parts by Convolutional Neural Networks

被引:21
|
作者
Zidek, Kamil [1 ]
Hosovsky, Alexander [1 ]
Pitel', Jan [1 ]
Bednar, Slavomir [1 ]
机构
[1] Tech Univ Kosice, Dept Ind Engn & Informat, Fac Mfg Technol Seat Presov, Bayerova 1, Presov, Slovakia
来源
ADVANCES IN MANUFACTURING ENGINEERING AND MATERIALS, ICMEM 2018 | 2019年
关键词
Deep learning; Object recognition; Augmented reality;
D O I
10.1007/978-3-319-99353-9_30
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper describes the experiments with the use of deep neural networks (CNN) for robust identification of assembly parts (screws, nuts) and assembly features (holes), to speed up any assembly process with augmented reality application. The simple image processing tasks with static camera and recognized parts can be handled by standard image processing algorithms (threshold, Hough line/circle detection and contour detection), but the augmented reality devices require dynamic recognition of features detected in various distances and angles. The problem can be solved by deep learning CNN which is robust to orientation, scale and in cases when element is not fully visible. We tested two pretrained CNN models Mobilenet V1 and SSD Fast RCNN Inception V2 SSD extension have been tested to detect exact position. The results obtained were very promising in comparison to standard image processing techniques.
引用
收藏
页码:281 / 289
页数:9
相关论文
共 50 条
  • [21] Convolutional neural networks for ship type recognition
    Rainey, Katie
    Reeder, John D.
    Corelli, Alexander G.
    AUTOMATIC TARGET RECOGNITION XXVI, 2016, 9844
  • [22] GAIT RECOGNITION BASED ON CONVOLUTIONAL NEURAL NETWORKS
    Sokolova, A.
    Konushin, A.
    INTERNATIONAL WORKSHOP PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE, 2017, 42-2 (W4): : 207 - 212
  • [23] TOWARD AIRCRAFT RECOGNITION WITH CONVOLUTIONAL NEURAL NETWORKS
    Mash, Robert
    Becherer, Nicholas
    Woolley, Brian
    Pecarina, John
    PROCEEDINGS OF THE 2016 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON) AND OHIO INNOVATION SUMMIT (OIS), 2016, : 225 - 232
  • [24] Convolutional Neural Networks and Face Recognition Task
    Sochenkova, A.
    Sochenkov, I.
    Makovetskii, A.
    Vokhmintsev, A.
    Melnikov, A.
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XL, 2017, 10396
  • [25] Convolutional Neural Networks for Distant Speech Recognition
    Swietojanski, Pawel
    Ghoshal, Arnab
    Renals, Steve
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (09) : 1120 - 1124
  • [26] An Evaluation of Convolutional Neural Networks on Material Recognition
    Shang, Xiaowei
    Xu, Ying
    Qi, Lin
    Madessa, Amanuel Hirpa
    Dong, Junyu
    2017 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTED, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI), 2017,
  • [27] Human Activity Recognition with Convolutional Neural Networks
    Bevilacqua, Antonio
    MacDonald, Kyle
    Rangarej, Aamina
    Widjaya, Venessa
    Caulfield, Brian
    Kechadi, Tahar
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT III, 2019, 11053 : 541 - 552
  • [28] Robust Convolutional Neural Networks for Image Recognition
    Albeahdili, Hayder M.
    Alwzwazy, Haider A.
    Islam, Naz E.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2015, 6 (11) : 105 - 111
  • [29] Driving Posture Recognition by Convolutional Neural Networks
    Yan, Chao
    Zhang, Bailing
    Coenen, Frans
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 680 - 685
  • [30] Personality Recognition Using Convolutional Neural Networks
    Gimenez, Maite
    Paredes, Roberto
    Rosso, Paolo
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, CICLING 2017, PT II, 2018, 10762 : 313 - 323