Luteolin organic solvent interactions. A molecular dynamics simulation analysis

被引:7
|
作者
Smail, Khadidja [1 ]
Tchouar, Noureddine [2 ,3 ]
Barj, Mohammed [4 ]
Marekha, Bogdan [4 ]
Idrissi, A. [4 ]
机构
[1] Univ Sci & Technol Oran Mohamed Boudiaf USTO MB, Dept Biotechnol, El Mnaouer 31000, Oran, Algeria
[2] Univ Sci & Technol Oran Mohamed Boudiaf USTO MB, Lab Modelisat & Optimisat Syst Ind LAMOS, El Mnaouer 31000, Oran, Algeria
[3] USTO MB, Fac Chim, Dept Chim Phys, Oran 31000, Algeria
[4] Univ Lille 1 Sci & Technol, LASIR, UMR 8516, F-59650 Villeneuve Dascq, France
关键词
Luteolin; Hydrogen bond; Organic solvents; Molecular dynamics; RDF; Orientation; TAXIFOLIN ANTIOXIDANTS; OH GROUPS; FLAVONOIDS; QUERCETIN; DENSITY; PACKAGE;
D O I
10.1016/j.molliq.2015.09.043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics (MD) simulations have been performed on Luteolin (Lut) dissolved in various solvents (methanol, 1-propanol, 2-propanol, 1-butanol, dimethylsulfoxide, acetone and hexane) with the purpose to characterize the local structure around the hydroxyl (OH)1 and carbonyl (C=0) moieties and to correlate the findings with the experimental vibrational spectroscopy and NMR results. The local structure is analyzed through the calculation of the radial distribution functions (RDF), the nearest neighbor radial and orientation distribution functions as well as the distribution of the dihedral angle involving the C=0 and the adjacent (OH)(1) atoms. Our results show that the C=0 moiety is interacting in a similar way with the protic solvents while the intra molecular hydrogen bond between this moiety and the (OH)(1) hydroxyl group is weakened in favor of the intermolecular hydrogen bond between the (OH)(1) and the protic and aprotic solvents. (c) 2015 Elsevier BM. All rights reserved.
引用
收藏
页码:503 / 508
页数:6
相关论文
共 50 条
  • [21] Molecular dynamics simulation of properties of solvent in gel network
    Feng, Jian
    Huang, Yongmin
    Liu, Honglai
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2007, 58 (05): : 1073 - 1076
  • [22] A macromolecule in a solvent: Adaptive resolution molecular dynamics simulation
    Praprotnik, Matej
    Delle Site, Luigi
    Kremer, Kurt
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (13):
  • [23] Luteolin - polyvinylpyrrolidone amorphous formulations: analysing intermolecular interactions via molecular dynamics simulations
    Koromili, M.
    Kapourani, A.
    Assimopoulou, A. N.
    Barmpalexis, P.
    PLANTA MEDICA, 2022, 88 (15) : 1576 - 1576
  • [24] Molecular dynamics simulation of interactions in glycolytic enzymes
    D. Hakobyan
    K. Nazaryan
    Biochemistry (Moscow), 2006, 71 : 370 - 375
  • [25] Molecular dynamics simulation of interactions in glycolytic enzymes
    Hakobyan, D
    Nazaryan, K
    BIOCHEMISTRY-MOSCOW, 2006, 71 (04) : 370 - 375
  • [26] Molecular length and molecular charge influence adhesive interactions.
    Roque, RL
    Herrera, S
    Yeh, T
    Philip, J
    Bada, R
    Miles, A
    Haritunians, T
    Addy, C
    Rodriguez, L
    Borisavljevic, T
    Vaghefi, H
    Matsumoto, SS
    Piccionelli, G
    Oppenheimer, SB
    FASEB JOURNAL, 1997, 11 (03): : 684 - 684
  • [27] Solvent-Dependent Changes in Molecular Reorientation Dynamics: The Role of Solvent-Solvent Interactions
    Hay, Christine E.
    Marken, Frank
    Blanchard, G. J.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (14): : 4957 - 4962
  • [28] Research on solubility, solvent effect and thermodynamics analysis of Lisinopril dissolution and molecular dynamics simulation
    Yu, Yang
    Wang, Yue
    Du, Cunbin
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2025, 206
  • [29] ANALYSIS OF MUD HYDRAULICS INTERACTIONS.
    Lummus, James L.
    Petroleum Engineer International, 1974, 46 (02):
  • [30] Molecular Interactions between a Biodegradable Demulsifier and Asphaltenes in an Organic Solvent
    Natarajan, Anand
    Kuznicki, Natalie
    Harbottle, David
    Masliyah, Jacob
    Zeng, Hongbo
    Xu, Zhenghe
    ENERGY & FUELS, 2016, 30 (12) : 10179 - 10186