Instance-level Object Recognition Using Deep Temporal Coherence

被引:0
|
作者
Lagunes-Fortiz, Miguel [1 ]
Damen, Dima [2 ]
Mayol-Cuevas, Walterio [1 ,2 ]
机构
[1] Univ Bristol, Bristol Robot Lab, Bristol, Avon, England
[2] Univ Bristol, Comp Sci Dept, Bristol, Avon, England
来源
ADVANCES IN VISUAL COMPUTING, ISVC 2018 | 2018年 / 11241卷
基金
英国工程与自然科学研究理事会;
关键词
Object recognition; Temporal modeling; Deep learning;
D O I
10.1007/978-3-030-03801-4_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we design and evaluate methods for exploiting temporal coherence present in video data for the task of instance object recognition. First, we evaluate the performance and generalisation capabilities of a Convolutional Neural Network for learning individual objects from multiple viewpoints coming from a video sequence. Then, we exploit the assumption that on video data the same object remains present over a number of consecutive frames. A-priori knowing such number of consecutive frames is a difficult task however, specially for mobile agents interacting with objects in front of them. Thus, we evaluate the use of temporal filters such as Cumulative Moving Average and a machine learning approach using Recurrent Neural Networks for this task. We also show that by exploiting temporal coherence, models trained with a few data points perform comparably to when the whole dataset is available.
引用
收藏
页码:274 / 285
页数:12
相关论文
共 50 条
  • [1] INSTRE: A New Benchmark for Instance-Level Object Retrieval and Recognition
    Wang, Shuang
    Jiang, Shuqiang
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2015, 11 (03)
  • [2] Instance-level object retrieval via deep region CNN
    Mei, Shuhuan
    Min, Weiqing
    Duan, Hua
    Jiang, Shuqiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (10) : 13247 - 13261
  • [3] Instance-level object retrieval via deep region CNN
    Shuhuan Mei
    Weiqing Min
    Hua Duan
    Shuqiang Jiang
    Multimedia Tools and Applications, 2019, 78 : 13247 - 13261
  • [4] Instance-level salient object segmentation
    Li, Guanbin
    Yan, Pengxiang
    Xie, Yuan
    Wang, Guisheng
    Lin, Liang
    Yu, Yizhou
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 207
  • [5] Instance-Level Salient Object Segmentation
    Li, Guanbin
    Xie, Yuan
    Lin, Liang
    Yu, Yizhou
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 247 - 256
  • [6] Robust object detection via instance-level temporal cycle confusion
    Wang, Xin
    Huang, Thomas E.
    Liu, Benlin
    Yu, Fisher
    Wang, Xiaolong
    Gonzalez, Joseph E.
    Darrell, Trevor
    arXiv, 2021,
  • [7] ION: Instance-level Object Navigation
    Li, Weijie
    Song, Xinhang
    Bai, Yubing
    Zhang, Sixian
    Jiang, Shuqiang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4343 - 4352
  • [8] Robust Object Detection via Instance-Level Temporal Cycle Confusion
    Wang, Xin
    Huang, Thomas E.
    Liu, Benlin
    Yu, Fisher
    Wang, Xiaolong
    Gonzalez, Joseph E.
    Darrell, Trevor
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9123 - 9132
  • [9] Reversible Recursive Instance-level Object Segmentation
    Liang, Xiaodan
    Wei, Yunchao
    Shen, Xiaohui
    Jie, Zequn
    Feng, Jiashi
    Lin, Liang
    Yan, Shuicheng
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 633 - 641
  • [10] Instance-level recognition and quantification for concrete surface bughole based on deep learning
    Wei, Fujia
    Yao, Gang
    Yang, Yang
    Sun, Yujia
    AUTOMATION IN CONSTRUCTION, 2019, 107