Control of transient chaos in tent maps near crisis. I. Fixed point targeting

被引:8
作者
Place, CM [1 ]
Arrowsmith, DK [1 ]
机构
[1] Univ London Queen Mary & Westfield Coll, Math Res Ctr, London E1 4NS, England
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 02期
关键词
D O I
10.1103/PhysRevE.61.1357
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Combinatorial techniques are applied to the symbolic dynamics representing transient chaotic behavior in tent maps in order to solve the problem of Ott-Grebogi-Yorke control to the nontrivial fixed point occurring in such maps. This approach allows ''preimage overlap" to be treated exactly. Closed forms for both the probability of control being achieved and the average number of iterations to control are derived. The results are discussed in relation to the work of Tel and shed new light on the transition to the control of permanent chaos.
引用
收藏
页码:1357 / 1368
页数:12
相关论文
共 12 条
[1]  
Arrowsmith D. K., 1992, DYNAMICAL SYSTEMS
[2]  
Beck C., 1993, THERMODYNAMICS CHAOT
[3]  
Chen G., 1998, CHAOS ORDER
[4]   PRINCIPLES AND APPLICATIONS OF CHAOTIC SYSTEMS [J].
DITTO, W ;
MUNAKATA, T .
COMMUNICATIONS OF THE ACM, 1995, 38 (11) :96-102
[5]   CHAOTIC ATTRACTORS IN CRISIS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1982, 48 (22) :1507-1510
[6]   DYNAMICS OF DENSITY DEPENDENT POPULATION MODELS [J].
GUCKENHEIMER, J ;
OSTER, G ;
IPAKTCHI, A .
JOURNAL OF MATHEMATICAL BIOLOGY, 1977, 4 (02) :101-147
[7]  
Hardy GodfreyHarold., 1979, An Introduction to the Theory of Numbers, V5
[8]  
ODLYZKO AM, 1995, HDB COMBINATORICS, V2, pCH22
[9]   Control of transient chaos in tent maps near crisis. II. Periodic orbit targeting [J].
Place, CM ;
Arrowsmith, DK .
PHYSICAL REVIEW E, 2000, 61 (02) :1369-1381
[10]  
PLACE CM, UNPUB INTERIM REPORT