Visualizing and Predicting Culex Tarsalis Trapcounts for West Nile Virus (WNV) Disease Incidence using Machine Learning Models

被引:0
作者
Chinnathambi, Radhakrishnan Angamuthu [1 ]
Marquette, Alex [1 ]
Clark, Tyler [1 ]
Johnson, Aaron [1 ]
Selvaraj, Daisy Flora [1 ]
Vaughan, Jeff [1 ,2 ]
Hanson, Todd [1 ,3 ]
Hanson, Scott [1 ,4 ]
Ranganathan, Prakash [1 ]
Kaabouch, Naima [1 ]
机构
[1] Univ North Dakota, Sch Elect Engn & Comp Sci SEECS, Grand Forks, ND 58202 USA
[2] Univ North Dakota, Dept Biol, Grand Forks, ND USA
[3] ND EPSCoR Tribal Coll Liaison, Grand Forks, ND USA
[4] City Grand Forks Mosquito Control, Grand Forks, ND USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT) | 2020年
关键词
Culex Tarsalis; Partial Least Squares Regression (PLSR); Support Vector Machines (SVM); SVM-PLSR; West Nile Virus (WNV); Vector Control;
D O I
10.1109/eit48999.2020.9208308
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper discusses how visualization and machine learning models can be effectively used to track and forecast trap counts of Culex Tarsalis, female mosquitoes responsible for spreading the West Nile Virus (WNV). This paper applies four different machine learning models namely, Support vector machines (SVM), Regression tree (RT), Partial Least Square Regression (PLSR), and a hybrid combination of SVM-PLSR to multi-year WNV data sets. Precisely, historical data sets ranging from 2005-2015 was used to predict trap counts for 2016. This paper also discusses a tree-based data visualization technique for displaying historical trap counts. The visualization model is designed to focus on identifying trends in the behavior of Culex tarsalis by tracking parameters such as meteorological data, dead birds, WNV cases, human cases, and deaths. The preliminary results indicate that SVM model outperforms interms of accuracy than other machine learning models. Keywords: Culex Tarsalis, Partial Least Squares Regression (PLSR), Support Vector Machines(SVM), SVM-PLSR, West Nile Virus (WNV), Vector Control.
引用
收藏
页码:581 / 587
页数:7
相关论文
共 12 条
[1]   West Nile virus in host-seeking mosquitoes within a residential neighborhood in Grand Forks, North Dakota [J].
Bell, JA ;
Mickelson, NJ ;
Vaughan, JA .
VECTOR-BORNE AND ZOONOTIC DISEASES, 2005, 5 (04) :373-382
[2]   West Nile virus [J].
Campbell, GL ;
Marfin, AA ;
Lanciotti, RS ;
Gubler, DJ .
LANCET INFECTIOUS DISEASES, 2002, 2 (09) :519-529
[3]  
Campion M, 2016, PROCEEDINGS OF 2016 FUTURE TECHNOLOGIES CONFERENCE (FTC), P310, DOI 10.1109/FTC.2016.7821628
[4]  
Carpenter SJ., 1974, Mosquitoes of North America (North of Mexico), DOI [10.4269/ajtmh.1956.5.2.tm0050020344a, DOI 10.4269/AJTMH.1956.5.2.TM0050020344A]
[5]  
Hale Deborah, 2015, Home Healthc Now, V33, P260, DOI 10.1097/NHH.0000000000000230
[6]  
Kramer L. D., 2017, W NILE VIRUS FLAVIVI
[7]   West Nile virus [J].
Kramer, Laura D. ;
Li, Jun ;
Shi, Pei-Yong .
LANCET NEUROLOGY, 2007, 6 (02) :171-181
[8]  
Kuhn M., 2013, APPL PREDICTIVE MODE, V26
[9]   Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States [J].
Lanciotti, RS ;
Roehrig, JT ;
Deubel, V ;
Smith, J ;
Parker, M ;
Steele, K ;
Crise, B ;
Volpe, KE ;
Crabtree, MB ;
Scherret, JH ;
Hall, RA ;
MacKenzie, JS ;
Cropp, CB ;
Panigrahy, B ;
Ostlund, E ;
Schmitt, B ;
Malkinson, M ;
Banet, C ;
Weissman, J ;
Komar, N ;
Savage, HM ;
Stone, W ;
McNamara, T ;
Gubler, DJ .
SCIENCE, 1999, 286 (5448) :2333-2337
[10]  
Lantz B., 2019, MACHINE LEARNING R E