A Fully Galerkin Method for the Damped Generalized Regularized Long-Wave (DGRLW) Equation

被引:19
作者
Achouri, Talha [2 ]
Ayadi, Mekki [1 ,3 ]
Omrani, Khaled [1 ]
机构
[1] Inst Super Sci Appl & Technol Sousse, Sousse Ibn Khaldoun 4003, Tunisia
[2] Fac Sci Monastir, Monastir 5019, Tunisia
[3] Ecole Natl Ingenieurs Tunis, Lab Genie Civil, Tunis, Tunisia
关键词
DGRLW equation; Crank-Nicolson method; existence; uniqueness; convergence; linearization; MAHONY-BURGERS EQUATIONS; MODEL EQUATIONS; SOLITARY WAVES; BBM EQUATION; CONVERGENCE; APPROXIMATIONS; BEHAVIOR;
D O I
10.1002/num.20367
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a fully discrete Galerkin scheme based on a nonlinear Crank-Nicolson method to approximate the solution of the DGRLW equation is constructed. Some a priori bounds are proved as well as error estimates. Then, a linearized modification scheme by an extrapolation method is discussed. The two schemes are time second order convergence. The last part is devoted to some numerical results. (C) 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 25: 668-684, 2009
引用
收藏
页码:668 / 684
页数:17
相关论文
共 27 条
[1]   On the convergence of difference schemes for the Benjamin-Bona-Mahony (BBM) equation [J].
Achouri, T. ;
Khiari, N. ;
Omrani, K. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) :999-1005
[2]   Approximate wave solutions for generalized Benjamin-Bona-Mahony-Burgers equations [J].
Al-Khaled, K ;
Momani, S ;
Alawneh, A .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (01) :281-292
[3]  
Arnold D.N., 1981, Math. Comp, V27, P737, DOI [10.1090/S0025- 5718-1981-0595041-4, DOI 10.1090/S0025-5718-1981-0595041-4]
[4]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[5]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[6]  
BROWDER F E., 1965, P S APPL MATH, V17, P24
[7]  
Ciarlet Philippe G., 2002, Finite Element Method for Elliptic Problems
[8]   Numerical behaviour of stable and unstable solitary waves [J].
Durán, A ;
López-Marcos, MA .
APPLIED NUMERICAL MATHEMATICS, 2002, 42 (1-3) :95-116
[10]   Finite difference approximate solutions for the two-dimensional Burgers' system [J].
Kannan, R ;
Chung, SK .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (1-2) :193-200