Dipole-dipole interactions in optical lattices do not follow an inverse cube power law

被引:23
作者
Wall, M. L. [1 ]
Carr, L. D. [1 ,2 ]
机构
[1] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[2] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany
基金
美国国家科学基金会;
关键词
WANNIER FUNCTIONS; POLAR-MOLECULES; GAS; SUPERFLUID; PHYSICS; ATOMS;
D O I
10.1088/1367-2630/15/12/123005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the effective dipole-dipole interactions in ultracold quantum gases on optical lattices as a function of asymmetry in confinement along the principal axes of the lattice. In particular, we study the matrix elements of the dipole-dipole interaction in the basis of lowest band Wannier functions which serve as a set of low-energy states for many-body physics on the lattice. We demonstrate that, for shallow lattices in quasi-reduced dimensional scenarios, the effective interaction between dipoles in an optical lattice is non-algebraic in the inter-particle separation at short to medium distance on the lattice scale and has a long-range power-law tail, in contrast to the pure power-law behavior of the dipole-dipole interaction in free space. The modifications to the free-space interaction can be sizable; we identify differences of up to 36% from the free-space interaction at the nearest-neighbor distance in quasi-one-dimensional arrangements. The interaction difference depends essentially on asymmetry in confinement, due to the d-wave anisotropy of the dipole-dipole interaction. Our results do not depend on statistics, applying to both dipolar Bose-Einstein condensates and degenerate Fermi gases. Using matrix product state simulations, we demonstrate that use of the correct lattice dipolar interaction leads to significant deviations from many-body predictions using the free-space interaction. Our results are relevant to up and coming experiments with ultracold heteronuclear molecules, Rydberg atoms and strongly magnetic atoms in optical lattices.
引用
收藏
页数:22
相关论文
共 79 条
[71]   Out-of-equilibrium dynamics with matrix product states [J].
Wall, M. L. ;
Carr, Lincoln D. .
NEW JOURNAL OF PHYSICS, 2012, 14
[72]   Microscopic Model for Feshbach Interacting Fermions in an Optical Lattice with Arbitrary Scattering Length and Resonance Width [J].
Wall, M. L. ;
Carr, L. D. .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[73]   Hyperfine molecular Hubbard Hamiltonian [J].
Wall, M. L. ;
Carr, L. D. .
PHYSICAL REVIEW A, 2010, 82 (01)
[74]   Simulating quantum magnets with symmetric top molecules [J].
Wall, Michael L. ;
Maeda, Kenji ;
Carr, Lincoln D. .
ANNALEN DER PHYSIK, 2013, 525 (10-11) :845-865
[75]   Emergent structure in a dipolar Bose gas in a one-dimensional lattice [J].
Wilson, Ryan M. ;
Bohn, John L. .
PHYSICAL REVIEW A, 2011, 83 (02)
[76]   Ultracold Fermionic Feshbach Molecules of 23Na40K [J].
Wu, Cheng-Hsun ;
Park, Jee Woo ;
Ahmadi, Peyman ;
Will, Sebastian ;
Zwierlein, Martin W. .
PHYSICAL REVIEW LETTERS, 2012, 109 (08)
[77]   Few-Body Bound States in Dipolar Gases and Their Detection [J].
Wunsch, B. ;
Zinner, N. T. ;
Mekhov, I. B. ;
Huang, S. -J. ;
Wang, D. -W. ;
Demler, E. .
PHYSICAL REVIEW LETTERS, 2011, 107 (07)
[78]   Observation of dipolar spin-exchange interactions with lattice-confined polar molecules [J].
Yan, Bo ;
Moses, Steven A. ;
Gadway, Bryce ;
Covey, Jacob P. ;
Hazzard, Kaden R. A. ;
Rey, Ana Maria ;
Jin, Deborah S. ;
Ye, Jun .
NATURE, 2013, 501 (7468) :521-+
[79]  
ZHU B, 2013, ARXIV13102221