Quantum simulation of fermionic systems using hybrid digital-analog quantum computing approach

被引:4
作者
Guseynov, N. M. [1 ,2 ]
Pogosov, W., V [1 ,3 ,4 ]
机构
[1] Dukhov Res Inst Automat VNIIA, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
[3] Russian Acad Sci, Inst Theoret & Appl Electrodynam, Moscow, Russia
[4] HSE Univ, Moscow, Russia
关键词
quantum algorithms; Hubbard model; fermionic swap network; electronic structure; Trotter evolution; INSULATOR; PHYSICS; MODELS; SPIN;
D O I
10.1088/1361-648X/ac6927
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We consider a hybrid digital-analog quantum computing approach, which allows implementing any quantum algorithm without standard two-qubit gates. This approach is based on the always-on interaction between qubits, which can provide an alternative to such gates. We show how digital-analog approach can be applied to simulate the dynamics of fermionic systems, in particular, the Fermi-Hubbard model, using fermionic SWAP network and refocusing technique. We concentrate on the effects of connectivity topology, the spread of interaction constants as well as on errors of entangling operations. We find that an optimal connectivity topology of qubits for the digital-analog simulation of fermionic systems of arbitrary dimensionality is a chain for spinless fermions and a ladder for spin 1/2 particles. Such a simple connectivity topology makes digital-analog approach attractive for the simulation of quantum materials and molecules.
引用
收藏
页数:15
相关论文
共 44 条
[1]  
Ambainis A, 2005, ARXIVQUANT PH0504012
[2]   Digital-Analog Quantum Simulation of Spin Models in Trapped Ions [J].
Arrazola, Inigo ;
Pedernales, Julen S. ;
Lamata, Lucas ;
Solano, Enrique .
SCIENTIFIC REPORTS, 2016, 6
[3]  
Arute F., 2020, ARXIV201007965
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]   Hybrid digital-analog simulation of many-body dynamics with superconducting qubits [J].
Babukhin, D., V ;
Zhukov, A. A. ;
Pogosov, W., V .
PHYSICAL REVIEW A, 2020, 101 (05)
[6]   Quantum computing with an always-on Heisenberg interaction [J].
Benjamin, SC ;
Bose, S .
PHYSICAL REVIEW LETTERS, 2003, 90 (24) :4
[7]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/nphys2252, 10.1038/NPHYS2252]
[8]  
Cleri LC, ARXIV210315689, V2021
[9]   Demonstration of a quantum error detection code using a square lattice of four superconducting qubits [J].
Corcoles, A. D. ;
Magesan, Easwar ;
Srinivasan, Srikanth J. ;
Cross, Andrew W. ;
Steffen, M. ;
Gambetta, Jay M. ;
Chow, Jerry M. .
NATURE COMMUNICATIONS, 2015, 6
[10]   Demonstration of a small programmable quantum computer with atomic qubits [J].
Debnath, S. ;
Linke, N. M. ;
Figgatt, C. ;
Landsman, K. A. ;
Wright, K. ;
Monroe, C. .
NATURE, 2016, 536 (7614) :63-+