Predicting the DNA Conductance Using a Deep Feedforward Neural Network Model

被引:16
作者
Aggarwal, Abhishek [1 ]
Vinayak, Vinayak [2 ]
Bag, Saientan [1 ]
Bhattacharyya, Chiranjib [3 ]
Waghmare, Umesh, V [4 ]
Maiti, Prabal K. [1 ]
机构
[1] Indian Inst Sci, Ctr Condensed Matter Theory, Dept Phys, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Undergrad Program, Bangalore 560012, Karnataka, India
[3] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
[4] Jawaharlal Nehru Ctr Adv Sci Res, Theoret Sci Unit, Bangalore 560064, Karnataka, India
关键词
CHARGE-TRANSPORT; ELECTRON-TRANSFER; HOLE TRANSFER; TEMPERATURE; TRANSITION; SIMULATION; JUNCTIONS; BACKBONE;
D O I
10.1021/acs.jcim.0c01072
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Double-stranded DNA (dsDNA) has been established as an efficient medium for charge migration, bringing it to the forefront of the field of molecular electronics and biological research. The charge migration rate is controlled by the electronic couplings between the two nucleobases of DNA/RNA- These electronic couplings strongly depend on the intermolecular geometry and orientation. Estimating these electronic couplings for all the possible relative geometries of molecules using the computationally demanding first-principles calculations requires a lot of time and computational resources. In this article, we present a machine learning (ML)-based model to calculate the electronic coupling between any two bases of dsDNA/dsRNA and bypass the computationally expensive first-principles calculations. Using the Coulomb matrix representation which encodes the atomic identities and coordinates of the DNA base pairs to prepare the input dataset, we train a feedforward neural network model. Our neural network (NN) model can predict the electronic couplings between dsDNA base pairs with any structural orientation with a mean absolute error (MAE) of less than 0.014 eV. We further use the NN-predicted electronic coupling values to compute the dsDNA/dsRNA conductance.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 103 条
  • [1] Multiscale modelling reveals higher charge transport efficiencies of DNA relative to RNA independent of mechanism
    Aggarwal, Abhishek
    Bag, Saientan
    Venkatramani, Ravindra
    Jain, Manish
    Maiti, Prabal K.
    [J]. NANOSCALE, 2020, 12 (36) : 18750 - 18760
  • [2] What do we know about DNA mechanics so far?
    Aggarwal, Abhishek
    Naskar, Supriyo
    Sahoo, Anil Kumar
    Mogurampelly, Santosh
    Garai, Ashok
    Maiti, Prabal K.
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2020, 64 : 42 - 50
  • [3] Remarkable similarity of force induced dsRNA conformational changes to stretched dsDNA and their detection using electrical measurements
    Aggarwal, Abhishek
    Bag, Saientan
    Maiti, Prabal K.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (45) : 28920 - 28928
  • [4] DNA-based nanobiostructured devices: The role of quasiperiodicity and correlation effects
    Albuquerque, E. L.
    Fulco, U. L.
    Freire, V. N.
    Caetano, E. W. S.
    Lyra, M. L.
    de Moura, F. A. B. F.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 535 (04): : 139 - 209
  • [5] Conformational gating of DNA conductance
    Artes, Juan Manuel
    Li, Yuanhui
    Qi, Jianqing
    Anantram, M. P.
    Hihath, Joshua
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [6] Machine Learning Prediction of Electronic Coupling between the Guanine Bases of DNA
    Bag, Saientan
    Aggarwal, Abhishek
    Maiti, Prabal K.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (38) : 7658 - 7664
  • [7] Tuning molecular fluctuation to boost the conductance in DNA based molecular wires
    Bag, Saientan
    Maiti, Prabal K.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (42) : 23514 - 23520
  • [8] Ultrahigh charge carrier mobility in nanotube encapsulated coronene stack
    Bag, Saientan
    Maiti, Prabal K.
    [J]. PHYSICAL REVIEW B, 2017, 96 (24)
  • [9] Dramatic changes in DNA conductance with stretching: structural polymorphism at a critical extension
    Bag, Saientan
    Mogurampelly, Santosh
    Goddard, William A., III
    Maiti, Prabal K.
    [J]. NANOSCALE, 2016, 8 (35) : 16044 - 16052
  • [10] Charge Transport in Dendrimer Melts Using Multiscale Modeling Simulation
    Bag, Saientan
    Jain, Manish
    Maiti, Prabal K.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (34) : 9142 - 9151