On canonical triangulations of once-punctured torus bundles and two-bridge link complements

被引:74
作者
Gueritaud, Francois
Futer, David
机构
[1] Ecole Normale Super, CNRS, DMA, F-75005 Paris, France
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
来源
GEOMETRY & TOPOLOGY | 2006年 / 10卷
关键词
D O I
10.2140/gt.2006.10.1239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the hyperbolization theorem for punctured torus bundles and two-bridge link complements by decomposing them into ideal tetrahedra which are then given hyperbolic structures, following Rivin's volume maximization principle.
引用
收藏
页码:1239 / 1284
页数:46
相关论文
共 25 条
[1]   THRICE-PUNCTURED SPHERES IN HYPERBOLIC 3-MANIFOLDS [J].
ADAMS, CC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 287 (02) :645-656
[2]   Small 3-manifolds of large genus [J].
Agol, I .
GEOMETRIAE DEDICATA, 2003, 102 (01) :53-64
[3]  
AGOL I, ARXIVMATHDG0506338
[4]  
AKIYOSHI H, 2000, KNOT THEORY DEDICATE
[5]  
AKIYOSHI H, 1999, SURIKAISEKIKENKYUSHO, P109
[6]  
ALESTALO P, 1997, SFB343
[7]  
Brock JF, 2003, COMMUN ANAL GEOM, V11, P987
[8]  
Chan Ken, 2002, THESIS U MELBOURNE
[9]   PRINCIPLE OF VARIATION FOR CIRCLE PACKINGS [J].
DEVERDIERE, YC .
INVENTIONES MATHEMATICAE, 1991, 104 (03) :655-669
[10]  
GUERITAUD F, ARXIVMATHGT0605481