Compensatory water effects link yearly global land CO2 sink changes to temperature

被引:526
作者
Jung, Martin [1 ]
Reichstein, Markus [1 ,2 ]
Schwalm, Christopher R. [3 ]
Huntingford, Chris [4 ]
Sitch, Stephen [5 ]
Ahlstrom, Anders [6 ,7 ]
Arneth, Almut [8 ]
Camps-Valls, Gustau [9 ]
Ciais, Philippe [10 ]
Friedlingstein, Pierre [11 ]
Gans, Fabian [1 ]
Ichii, Kazuhito [12 ,13 ]
Ain, Atul K. J. [14 ]
Kato, Etsushi [15 ]
Papale, Dario [16 ]
Poulter, Ben [17 ]
Raduly, Botond [16 ,18 ]
Rodenbeck, Christian [19 ]
Tramontana, Gianluca [16 ]
Viovy, Nicolas [10 ]
Wang, Ying-Ping [20 ]
Weber, Ulrich [1 ]
Zaehle, Sonke [1 ,2 ]
Zeng, Ning [21 ,22 ]
机构
[1] Max Planck Inst Biogeochem, Dept Biogeochem Integrat, D-07745 Jena, Germany
[2] Friedrich Schiller Univ Jena, Michael Stifel Ctr Jena Data Driven & Simulat Sci, D-07743 Jena, Germany
[3] Woods Hole Res Ctr, Falmouth, MA 02540 USA
[4] Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England
[5] Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4QF, Devon, England
[6] Stanford Univ, Sch Earth Energy & Environm Sci, Dept Earth Syst Sci, Stanford, CA 94305 USA
[7] Lund Univ, Dept Phys Geog & Ecosyst Sci, S-22362 Lund, Sweden
[8] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, D-82467 Garmisch Partenkirchen, Germany
[9] Univ Valencia, Image Proc Lab, Catedrat Jose Beltran, Valencia 46980, Spain
[10] UVSQ, CNRS, CEA, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France
[11] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QE, Devon, England
[12] Japan Agcy Marine Earth Sci & Technol, Dept Environm Geochem Cycle Res, Kanazawa Ku, Yokohama, Kanagawa 2360001, Japan
[13] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki 3058506, Japan
[14] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA
[15] Inst Appl Energy, Global Environm Program, Tokyo 1050003, Japan
[16] Univ Tuscia, Dept Innovat Biol Agrofood & Forest Syst, I-01100 Viterbo, Italy
[17] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA
[18] Sapientia Hungarian Univ Transylvania, Dept Bioengn, M Ciuc 530104, Romania
[19] Max Planck Inst Biogeochem, Dept Biogeochem Syst, D-07745 Jena, Germany
[20] CSIRO Oceans & Atmosphere, Aspendale, Vic 3195, Australia
[21] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China
[22] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
基金
美国国家科学基金会; 英国自然环境研究理事会; 美国国家航空航天局; 欧洲研究理事会; 瑞典研究理事会;
关键词
NET ECOSYSTEM EXCHANGE; CARBON-DIOXIDE; INTERANNUAL VARIABILITY; TERRESTRIAL ECOSYSTEMS; SEMIARID ECOSYSTEMS; CLIMATE; FLUXES; CYCLE; ASSIMILATION; RESPIRATION;
D O I
10.1038/nature20780
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems(1-3). It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales(3-14). Here we use empirical models based on eddy covariance data(15) and process-based models(16,17) to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance(3-6,9,11,12,14). Our study indicates that spatial climate covariation drives the global carbon cycle response.
引用
收藏
页码:516 / 520
页数:5
相关论文
共 45 条
  • [31] Reichstein M, 2005, GLOBAL CHANGE BIOL, V11, P1424, DOI [10.1111/j.1365-2486.2005.001002.x, 10.1111/j.1365-2486.2005.001010.x]
  • [32] Rödenbeck C, 2003, ATMOS CHEM PHYS, V3, P1919
  • [33] Observing terrestrial ecosystems and the carbon cycle from space
    Schimel, David
    Pavlick, Ryan
    Fisher, Joshua B.
    Asner, Gregory P.
    Saatchi, Sassan
    Townsend, Philip
    Miller, Charles
    Frankenberg, Christian
    Hibbard, Kathy
    Cox, Peter
    [J]. GLOBAL CHANGE BIOLOGY, 2015, 21 (05) : 1762 - 1776
  • [34] Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis
    Schwalm, Christopher R.
    Williams, Christopher A.
    Schaefer, Kevin
    Arneth, Almut
    Bonal, Damien
    Buchmann, Nina
    Chen, Jiquan
    Law, Beverly E.
    Lindroth, Anders
    Luyssaert, Sebastiaan
    Reichstein, Markus
    Richardson, Andrew D.
    [J]. GLOBAL CHANGE BIOLOGY, 2010, 16 (02) : 657 - 670
  • [35] Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model
    Sitch, S
    Smith, B
    Prentice, IC
    Arneth, A
    Bondeau, A
    Cramer, W
    Kaplan, JO
    Levis, S
    Lucht, W
    Sykes, MT
    Thonicke, K
    Venevsky, S
    [J]. GLOBAL CHANGE BIOLOGY, 2003, 9 (02) : 161 - 185
  • [36] Recent trends and drivers of regional sources and sinks of carbon dioxide
    Sitch, S.
    Friedlingstein, P.
    Gruber, N.
    Jones, S. D.
    Murray-Tortarolo, G.
    Ahlstrom, A.
    Doney, S. C.
    Graven, H.
    Heinze, C.
    Huntingford, C.
    Levis, S.
    Levy, P. E.
    Lomas, M.
    Poulter, B.
    Viovy, N.
    Zaehle, S.
    Zeng, N.
    Arneth, A.
    Bonan, G.
    Bopp, L.
    Canadell, J. G.
    Chevallier, F.
    Ciais, P.
    Ellis, R.
    Gloor, M.
    Peylin, P.
    Piao, S. L.
    Le Quere, C.
    Smith, B.
    Zhu, Z.
    Myneni, R.
    [J]. BIOGEOSCIENCES, 2015, 12 (03) : 653 - 679
  • [37] Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space
    Smith, B
    Prentice, IC
    Sykes, MT
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2001, 10 (06): : 621 - 637
  • [38] Effect of interannual climate variability on carbon storage in Amazonian ecosystems
    Tian, HQ
    Melillo, JM
    Kicklighter, DW
    McGuire, AD
    Helfrich, JVK
    Moore, B
    Vörösmarty, CJ
    [J]. NATURE, 1998, 396 (6712) : 664 - 667
  • [39] Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms
    Tramontana, Gianluca
    Jung, Martin
    Schwalm, Christopher R.
    Ichii, Kazuhito
    Camps-Valls, Gustau
    Raduly, Botond
    Reichstein, Markus
    Arain, M. Altaf
    Cescatti, Alessandro
    Kiely, Gerard
    Merbold, Lutz
    Serrano-Ortiz, Penelope
    Sickert, Sven
    Wolf, Sebastian
    Papale, Dario
    [J]. BIOGEOSCIENCES, 2016, 13 (14) : 4291 - 4313
  • [40] Drought and ecosystem carbon cycling
    van der Molen, M. K.
    Dolman, A. J.
    Ciais, P.
    Eglin, T.
    Gobron, N.
    Law, B. E.
    Meir, P.
    Peters, W.
    Phillips, O. L.
    Reichstein, M.
    Chen, T.
    Dekker, S. C.
    Doubkova, M.
    Friedl, M. A.
    Jung, M.
    van den Hurk, B. J. J. M.
    de Jeu, R. A. M.
    Kruijt, B.
    Ohta, T.
    Rebel, K. T.
    Plummer, S.
    Seneviratne, S. I.
    Sitch, S.
    Teuling, A. J.
    van der Werf, G. R.
    Wang, G.
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2011, 151 (07) : 765 - 773