Hitchin's self-duality equations on complete Riemannian manifolds

被引:0
作者
Li, JY
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:419 / 428
页数:10
相关论文
共 18 条
[1]   POSITIVE HARMONIC-FUNCTIONS ON COMPLETE MANIFOLDS OF NEGATIVE CURVATURE [J].
ANDERSON, MT ;
SCHOEN, R .
ANNALS OF MATHEMATICS, 1985, 121 (03) :429-461
[2]  
Cheng S. Y., 1980, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), VXXXVI, P147
[3]   ARCHIMEDEAN SUPERRIGIDITY AND HYPERBOLIC GEOMETRY [J].
CORLETTE, K .
ANNALS OF MATHEMATICS, 1992, 135 (01) :165-182
[4]  
CORLETTE K, 1988, J DIFFER GEOM, V28, P361
[5]  
Ding W. Y., 1991, INT J MATH, V2, P617
[6]  
Donaldson S. K., 1992, Journal of Geometry and Physics, V8, P89, DOI 10.1016/0393-0440(92)90044-2
[7]  
DONALDSON SK, 1987, P LOND MATH SOC, V55, P127
[8]   ON THE ESSENTIAL SPECTRUM OF A COMPLETE RIEMANNIAN MANIFOLD [J].
DONNELLY, H .
TOPOLOGY, 1981, 20 (01) :1-14
[9]  
Gilbarg D, 1977, ELLIPTIC PARTIAL DIF
[10]  
Hamilton R. S., 1975, Harmonic maps of manifolds with boundary, V471