Modular curves with infinitely many cubic points

被引:7
作者
Jeon, Daeyeol [1 ]
机构
[1] Kongju Natl Univ, Dept Math Educ, 56 Gongjudaehak Ro, Gongju Si 314701, Chungcheongnam, South Korea
基金
新加坡国家研究基金会;
关键词
Modular curve; Trigonal; Trielliptic; Cubic point; ABELIAN-VARIETIES;
D O I
10.1016/j.jnt.2020.09.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we determine all modular curves X-0(N) that admit infinitely many cubic points. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:344 / 355
页数:12
相关论文
共 16 条
[1]  
ABRAMOVICH D, 1991, COMPOS MATH, V78, P227
[2]  
[Anonymous], 1973, P S PURE MATH
[3]   Bielliptic modular curves [J].
Bars, F .
JOURNAL OF NUMBER THEORY, 1999, 76 (01) :154-165
[4]   On quadratic points of classical modular curves [J].
Bars, Francesc .
NUMBER THEORY RELATED TO MODULAR CURVES: MOMOSE MEMORIAL VOLUME, 2018, 701 :17-34
[5]  
Cremona J. E., 1997, Algorithms for Modular Elliptic Curves
[6]  
DEBARRE O, 1993, COMPOS MATH, V88, P235
[7]   DIOPHANTINE APPROXIMATION ON ABELIAN-VARIETIES [J].
FALTINGS, G .
ANNALS OF MATHEMATICS, 1991, 133 (03) :549-576
[8]  
Faltings G., 1994, PERSPECT MATH, V15, P175
[9]   CURVES WITH INFINITELY MANY POINTS OF FIXED DEGREE [J].
FREY, G .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 85 (1-3) :79-83
[10]   BIELLIPTIC CURVES AND SYMMETRICAL PRODUCTS [J].
HARRIS, J ;
SILVERMAN, JH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (02) :347-356